Your browser doesn't support javascript.
loading
CENsible: Interpretable Insights into Small-Molecule Binding with Context Explanation Networks.
Bhatt, Roshni; Koes, David Ryan; Durrant, Jacob D.
Afiliação
  • Bhatt R; Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15260.
  • Koes DR; Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260.
  • Durrant JD; Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15260.
bioRxiv ; 2023 Oct 21.
Article em En | MEDLINE | ID: mdl-37904961
We present a novel and interpretable approach for predicting small-molecule binding affinities using context explanation networks (CENs). Given the specific structure of a protein/ligand complex, our CENsible scoring function uses a deep convolutional neural network to predict the contributions of pre-calculated terms to the overall binding affinity. We show that CENsible can effectively distinguish active vs. inactive compounds for many systems. Its primary benefit over related machine-learning scoring functions, however, is that it retains interpretability, allowing researchers to identify the contribution of each pre-calculated term to the final affinity prediction, with implications for subsequent lead optimization.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: BioRxiv Ano de publicação: 2023 Tipo de documento: Article País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: BioRxiv Ano de publicação: 2023 Tipo de documento: Article País de publicação: Estados Unidos