Multi-pollutant biosorption of organic and inorganic pollutants by brown algae waste from alginate production: batch and fixed-bed investigation.
Environ Sci Pollut Res Int
; 2023 Nov 04.
Article
em En
| MEDLINE
| ID: mdl-37924398
The reuse of biomass waste has been gaining attention in adsorption processes to remove pollutants of emerging concern from water and wastewater. In this work, the potential of alginate-extracted macro-algae waste to uptake synthetic dyes and metal cations was evaluated in comparison with raw algae. In affinity assays, both materials were able to remove metal cations and cationic dyes up to maximum rates, and no significant removal was observed for an anionic dye in an acidic medium. Competition was observed in multi-component systems of metal cations and dyes. For binary samples containing organic and inorganic contaminants, kinetic modeling evidenced the distinct nature of both types of adsorbates. Pb(II) biosorption was best described as a first-order process, while second-order and Elovich models better fitted methyl blue (MB) uptake data. For equimolar binary samples, the Sips isothermal model fitted the experimental data more satisfactorily at room temperature. Isotherms for 20, 30, 40, and 60 °C exhibited favorable adsorption profiles with spontaneous ΔG values for both raw macro-algae and waste from alginate extraction. Maximum adsorption capacities were competitive with previous reports in the literature for a wide range of biomaterials, pointing to the slightly higher efficiency with algae waste in batch experiments. In elution tests, HNO3 (0.5 M) showed the best recovery rates of metal cations. Continuous biosorption operation revealed the performance of the brown algae waste was considerably more efficient than raw algae with breakthrough biosorption capacities up to 3.96 and 0.97 mmol.g-1 for the removal of Pb(II) and MB, respectively. A total of 3.0 g of algae and algae waste were able to deliver 1.20 and 1.62 L of contaminant-free water, respectively. XPS analyses corroborate previous assays that pointed to the prevalence of physisorption with evidence of complexation, ionic exchange, and hydrogen displacement mechanisms.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Revista:
Environ Sci Pollut Res Int
Assunto da revista:
SAUDE AMBIENTAL
/
TOXICOLOGIA
Ano de publicação:
2023
Tipo de documento:
Article
País de afiliação:
Brasil
País de publicação:
Alemanha