Your browser doesn't support javascript.
loading
QSPR predicting the vapor pressure of pesticides into high/low volatility classes.
Duchowicz, Pablo R; Fioressi, Silvina E; Bacelo, Daniel E; Quispe, Alexander Q; Yapu, Ebbe L; Castañeta, Heriberto.
Afiliação
  • Duchowicz PR; Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), CONICET, UNLP, Diag. 113 y 64, C.C. 16, Sucursal 4, 1900, La Plata, Argentina. prduchowicz@gmail.com.
  • Fioressi SE; Facultad de Ciencias Exactas y Naturales, Universidad de Belgrano, CONICET, Villanueva 1324, 1426, Buenos Aires, Argentina.
  • Bacelo DE; Facultad de Ciencias Exactas y Naturales, Universidad de Belgrano, CONICET, Villanueva 1324, 1426, Buenos Aires, Argentina.
  • Quispe AQ; Carrera de Ciencias Químicas, Universidad Mayor de San Andrés, 303, La Paz, Bolivia.
  • Yapu EL; Carrera de Ciencias Químicas, Universidad Mayor de San Andrés, 303, La Paz, Bolivia.
  • Castañeta H; Instituto de Investigaciones Químicas, Universidad Mayor de San Andrés, 303, La Paz, Bolivia.
Environ Sci Pollut Res Int ; 31(1): 1395-1402, 2024 Jan.
Article em En | MEDLINE | ID: mdl-38038924
In this work, the vapor pressure of pesticides is employed as an indicator of their volatility potential. Quantitative Structure-Property Relationship models are established to predict the classification of compounds according to their volatility, into the high and low binary classes separated by the 1-mPa limit. A large dataset of 1005 structurally diverse pesticides with known experimental vapor pressure data at 20 °C is compiled from the publicly available Pesticide Properties DataBase (PPDB) and used for model development. The freely available PaDEL-Descriptor and ISIDA/Fragmentor molecular descriptor programs provide a large number of 19,947 non-conformational molecular descriptors that are analyzed through multivariable linear regressions and the Replacement Method technique. Through the selection of appropriate molecular descriptors of the substructure fragment type and the use of different standard classification metrics of model's quality, the classification of the structure-property relationship achieves acceptable results for discerning between the high and low volatility classes. Finally, an application of the obtained QSPR model is performed to predict the classes for 504 pesticides not having experimentally measured vapor pressures.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Praguicidas Idioma: En Revista: Environ Sci Pollut Res Int Assunto da revista: SAUDE AMBIENTAL / TOXICOLOGIA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Argentina País de publicação: Alemanha

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Praguicidas Idioma: En Revista: Environ Sci Pollut Res Int Assunto da revista: SAUDE AMBIENTAL / TOXICOLOGIA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Argentina País de publicação: Alemanha