Your browser doesn't support javascript.
loading
Artificial Intelligence Agents for Materials Sciences.
Oliveira, O N; Christino, L; Oliveira, M C F; Paulovich, F V.
Afiliação
  • Oliveira ON; University of São Paulo, São Carlos 13560-970, SP, Brazil.
  • Christino L; Dalhousie University, Halifax B3H 4R2, Canada.
  • Oliveira MCF; Eindhoven University of Technology (TU/e), Eindhoven 5600 MB, Netherlands.
  • Paulovich FV; University of São Paulo, São Carlos 13560-970, SP, Brazil.
J Chem Inf Model ; 63(24): 7605-7609, 2023 Dec 25.
Article em En | MEDLINE | ID: mdl-38084508
The artificial intelligence (AI) tools based on large-language models may serve as a demonstration that we are reaching a groundbreaking new paradigm in which machines themselves will generate knowledge autonomously. This statement is based on the assumption that the ability to master natural languages is the ultimate frontier for this new paradigm and perhaps an essential step to achieving the so-called general artificial intelligence. Autonomous knowledge generation implies that a machine will be able, for instance, to retrieve and understand the contents of the scientific literature and provide interpretations for existing data, allowing it to propose and address new scientific problems. While one may assume that the continued development of AI tools exploiting large-language models, with more data used for training, may lead these systems to learn autonomously, this learning can be accelerated by devising human-assisted strategies to deal with specific tasks. For example, strategies may be implemented for AI tools to emulate the analysis of multivariate data by human experts or in identifying and explaining patterns in temporal series. In addition to generic AI tools, such as Chat AIs, one may conceive personal AI agents, potentially working together, that are likely to serve end users in the near future. In this perspective paper, we discuss the development of this type of agent, focusing on its architecture and requirements. As a proof-of-concept, we exemplify how such an AI agent could work to assist researchers in materials sciences.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Inteligência Artificial / Ciência dos Materiais Limite: Humans Idioma: En Revista: J Chem Inf Model Assunto da revista: INFORMATICA MEDICA / QUIMICA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Brasil País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Inteligência Artificial / Ciência dos Materiais Limite: Humans Idioma: En Revista: J Chem Inf Model Assunto da revista: INFORMATICA MEDICA / QUIMICA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Brasil País de publicação: Estados Unidos