Revisiting the role of 3-nitrotyrosine residues in the formation of alpha-synuclein oligomers and fibrils.
Arch Biochem Biophys
; 752: 109858, 2024 02.
Article
em En
| MEDLINE
| ID: mdl-38104957
ABSTRACT
Nitration of tyrosine residues in alpha-synuclein (a-syn) has been detected in different synucleinopathies, including Parkinson's disease. The potential role of 3-nitrotyrosine formation in a-syn, as an oxidative post-translational modification, is still elusive. In this work, we generated well-characterized tyrosine nitrated a-syn monomers and studied their capability to form oligomers and fibrils. We constructed tyrosine to phenylalanine mutants, containing a single tyrosine residue, a-syn mutant Y(125/133/136)F and Y(39/125/133)F) and assessed the impact in a-syn biophysical properties. Nitrated wild-type a-syn and the Y-F mutants, with one 3-nitrotyrosine residue in either the protein's N-terminal or C-terminal region, showed inhibition of fibril formation but retained the capacity of oligomer formation. The inhibition of a-syn fibrillation occurs even when an important amount of unmodified a-syn is still present. We characterized oligomers from both nitrated and non-nitrated forms of the wild-type protein and the mutant forms obtained. Our results indicate that the formation of 3-nitrotyrosine in a-syn could induce an off-pathway oligomer formation which may have an important impact in the development of synucleinopathies.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Doença de Parkinson
/
Sinucleinopatias
Limite:
Humans
Idioma:
En
Revista:
Arch Biochem Biophys
Ano de publicação:
2024
Tipo de documento:
Article
País de afiliação:
Uruguai
País de publicação:
Estados Unidos