Your browser doesn't support javascript.
loading
Solving the electronic Schrödinger equation for multiple nuclear geometries with weight-sharing deep neural networks.
Scherbela, Michael; Reisenhofer, Rafael; Gerard, Leon; Marquetand, Philipp; Grohs, Philipp.
Afiliação
  • Scherbela M; Research Network Data Science at University of Vienna, Vienna, Austria.
  • Reisenhofer R; Research Network Data Science at University of Vienna, Vienna, Austria. rafael.reisenhofer@uni-bremen.de.
  • Gerard L; Faculty of Mathematics, University of Vienna, Vienna, Austria. rafael.reisenhofer@uni-bremen.de.
  • Marquetand P; Research Network Data Science at University of Vienna, Vienna, Austria.
  • Grohs P; Research Network Data Science at University of Vienna, Vienna, Austria.
Nat Comput Sci ; 2(5): 331-341, 2022 May.
Article em En | MEDLINE | ID: mdl-38177815
ABSTRACT
The Schrödinger equation describes the quantum-mechanical behaviour of particles, making it the most fundamental equation in chemistry. A solution for a given molecule allows computation of any of its properties. Finding accurate solutions for many different molecules and geometries is thus crucial to the discovery of new materials such as drugs or catalysts. Despite its importance, the Schrödinger equation is notoriously difficult to solve even for single molecules, as established methods scale exponentially with the number of particles. Combining Monte Carlo techniques with unsupervised optimization of neural networks was recently discovered as a promising approach to overcome this curse of dimensionality, but the corresponding methods do not exploit synergies that arise when considering multiple geometries. Here we show that sharing the vast majority of weights across neural network models for different geometries substantially accelerates optimization. Furthermore, weight-sharing yields pretrained models that require only a small number of additional optimization steps to obtain high-accuracy solutions for new geometries.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Nat Comput Sci Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Áustria País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Nat Comput Sci Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Áustria País de publicação: Estados Unidos