Your browser doesn't support javascript.
loading
Protein constraints in genome-scale metabolic models: Data integration, parameter estimation, and prediction of metabolic phenotypes.
Ferreira, Maurício Alexander de Moura; Silveira, Wendel Batista da; Nikoloski, Zoran.
Afiliação
  • Ferreira MAM; Department of Microbiology, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil.
  • Silveira WBD; Department of Microbiology, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil.
  • Nikoloski Z; Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany.
Biotechnol Bioeng ; 121(3): 915-930, 2024 Mar.
Article em En | MEDLINE | ID: mdl-38178617
ABSTRACT
Genome-scale metabolic models provide a valuable resource to study metabolism and cell physiology. These models are employed with approaches from the constraint-based modeling framework to predict metabolic and physiological phenotypes. The prediction performance of genome-scale metabolic models can be improved by including protein constraints. The resulting protein-constrained models consider data on turnover numbers (kcat ) and facilitate the integration of protein abundances. In this systematic review, we present and discuss the current state-of-the-art regarding the estimation of kinetic parameters used in protein-constrained models. We also highlight how data-driven and constraint-based approaches can aid the estimation of turnover numbers and their usage in improving predictions of cellular phenotypes. Finally, we identify standing challenges in protein-constrained metabolic models and provide a perspective regarding future approaches to improve the predictive performance.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fenótipo / Modelos Biológicos Tipo de estudo: Prognostic_studies / Risk_factors_studies / Systematic_reviews Idioma: En Revista: Biotechnol Bioeng Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Brasil País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fenótipo / Modelos Biológicos Tipo de estudo: Prognostic_studies / Risk_factors_studies / Systematic_reviews Idioma: En Revista: Biotechnol Bioeng Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Brasil País de publicação: Estados Unidos