Protein constraints in genome-scale metabolic models: Data integration, parameter estimation, and prediction of metabolic phenotypes.
Biotechnol Bioeng
; 121(3): 915-930, 2024 Mar.
Article
em En
| MEDLINE
| ID: mdl-38178617
ABSTRACT
Genome-scale metabolic models provide a valuable resource to study metabolism and cell physiology. These models are employed with approaches from the constraint-based modeling framework to predict metabolic and physiological phenotypes. The prediction performance of genome-scale metabolic models can be improved by including protein constraints. The resulting protein-constrained models consider data on turnover numbers (kcat ) and facilitate the integration of protein abundances. In this systematic review, we present and discuss the current state-of-the-art regarding the estimation of kinetic parameters used in protein-constrained models. We also highlight how data-driven and constraint-based approaches can aid the estimation of turnover numbers and their usage in improving predictions of cellular phenotypes. Finally, we identify standing challenges in protein-constrained metabolic models and provide a perspective regarding future approaches to improve the predictive performance.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Fenótipo
/
Modelos Biológicos
Tipo de estudo:
Prognostic_studies
/
Risk_factors_studies
/
Systematic_reviews
Idioma:
En
Revista:
Biotechnol Bioeng
Ano de publicação:
2024
Tipo de documento:
Article
País de afiliação:
Brasil
País de publicação:
Estados Unidos