Your browser doesn't support javascript.
loading
Multi-and many-objective optimization: present and future in de novo drug design.
Angelo, Jaqueline S; Guedes, Isabella A; Barbosa, Helio J C; Dardenne, Laurent E.
Afiliação
  • Angelo JS; Coordenação de Modelagem Computacional, Laboratório Nacional de Computação Científica, Petrópolis, Brazil.
  • Guedes IA; Coordenação de Modelagem Computacional, Laboratório Nacional de Computação Científica, Petrópolis, Brazil.
  • Barbosa HJC; Coordenação de Modelagem Computacional, Laboratório Nacional de Computação Científica, Petrópolis, Brazil.
  • Dardenne LE; Coordenação de Modelagem Computacional, Laboratório Nacional de Computação Científica, Petrópolis, Brazil.
Front Chem ; 11: 1288626, 2023.
Article em En | MEDLINE | ID: mdl-38192501
ABSTRACT
de novo Drug Design (dnDD) aims to create new molecules that satisfy multiple conflicting objectives. Since several desired properties can be considered in the optimization process, dnDD is naturally categorized as a many-objective optimization problem (ManyOOP), where more than three objectives must be simultaneously optimized. However, a large number of objectives typically pose several challenges that affect the choice and the design of optimization methodologies. Herein, we cover the application of multi- and many-objective optimization methods, particularly those based on Evolutionary Computation and Machine Learning techniques, to enlighten their potential application in dnDD. Additionally, we comprehensively analyze how molecular properties used in the optimization process are applied as either objectives or constraints to the problem. Finally, we discuss future research in many-objective optimization for dnDD, highlighting two important possible impacts i) its integration with the development of multi-target approaches to accelerate the discovery of innovative and more efficacious drug therapies and ii) its role as a catalyst for new developments in more fundamental and general methodological frameworks in the field.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Front Chem Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Brasil País de publicação: Suíça

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Front Chem Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Brasil País de publicação: Suíça