Your browser doesn't support javascript.
loading
First Record of Microplastic Contamination in the Non-Native Dark False Mussel Mytilopsis leucophaeata (Bivalvia: Dreissenidae) in a Coastal Urban Lagoon.
Neves, Raquel A F; Guimarães, Tâmara B; Santos, Luciano N.
Afiliação
  • Neves RAF; Graduate Program in Neotropical Biodiversity (PPGBIO), Institute of Biosciences (IBIO), Federal University of the State of Rio de Janeiro (UNIRIO), Avenida Pasteur 458, Rio de Janeiro 22290-240, Brazil.
  • Guimarães TB; Research Group of Experimental and Applied Ecology, Department of Ecology and Marine Resources, Institute of Biosciences (IBIO), Federal University of the State of Rio de Janeiro (UNIRIO), Avenida Pasteur 458 Lab 307, Rio de Janeiro 22290-240, Brazil.
  • Santos LN; Graduate Program in Neotropical Biodiversity (PPGBIO), Institute of Biosciences (IBIO), Federal University of the State of Rio de Janeiro (UNIRIO), Avenida Pasteur 458, Rio de Janeiro 22290-240, Brazil.
Article em En | MEDLINE | ID: mdl-38248509
ABSTRACT
Microplastic contamination is a global concern due to its conspicuous presence in aquatic ecosystems and its toxic nature to environmental and human health. False mussels are among the most notable fresh- and brackish water invaders. The invasive Mytilopsis leucophaeata in Rodrigo de Freitas Lagoon-RFL (Rio de Janeiro, Brazil) is the most abundant macrofaunal invertebrate, widely established and distributed throughout the lagoon. This study aimed to assess microplastic contamination in this invasive filter feeder and evaluate its potential use as a bioindicator. Agglomerates (~100 mussels) were manually collected using a stainless-steel spatula in ten sampling areas distributed throughout the whole lagoon and kept frozen. In the laboratory, 60 individuals were sorted by area for soft-tissue digestion. Each pool of 10 soft-tissue mussels (n = 6 by area) was wet-weighted and then placed in a 150-mL decontaminated glass beaker with 50 mL of 10% KOH. Samples were heated (40 °C) for 48 h, and digested samples were filtered in glass-fiber membranes. Microplastics were found in all samples of mussels (n = 60) from RFL; the particles were mostly lower than 100 µm with a mean concentration (±SD) of 35.96 ± 47.64 MPs g wet-weight-1. Microplastics were distinguished in seven shapes with different occurrences in samples (%) fiber (43.3%); fragment (34.3%); film (16.3%); sponge/foam (4.9%); pellet (0.57%), rope/filaments (0.17%); and undefined (0.4%). Thirteen colors of microplastics were found, but transparent (54.94%), black (10.77%), and white (9.36%) were the most common. Mytilopsis leucophaeata were useful to assess microplastic contamination in RFL and might be preferentially used in other invaded brackish systems instead of native and often threatened bivalves. Our results confirm the effective application of bivalves as an indicator of coastal microplastic pollution.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Bivalves / Microplásticos Limite: Animals / Humans País/Região como assunto: America do sul / Brasil Idioma: En Revista: Int J Environ Res Public Health Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Brasil País de publicação: Suíça

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Bivalves / Microplásticos Limite: Animals / Humans País/Região como assunto: America do sul / Brasil Idioma: En Revista: Int J Environ Res Public Health Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Brasil País de publicação: Suíça