Accelerated Cr (VI) removal by a three-dimensional electro-Fenton system using green iron nanoparticles.
Water Environ Res
; 96(1): e10981, 2024 Jan.
Article
em En
| MEDLINE
| ID: mdl-38264917
ABSTRACT
Green-synthesized iron nanoparticles (GAP-FeNP) were used as particle electrodes in a three-dimensional electro-Fenton (3DEF) process to accelerate the removal of hexavalent chromium [Cr (VI)]. Removal was evaluated by varying the pH (3.0, 6.0, and 9.0) and initial Cr (VI) concentrations (10, 30, and 50 mg/L) at 5 and 25 min. These results demonstrated that GAP-FeNP/3DEF treatment achieved more than 94% Cr (VI) removal under all tested conditions. Furthermore, it was observed that Cr (VI) removal exceeded 98% under pH 9.0 in all experimental parameters tested. The results of the response surface methodology (RSM) determined two optimal conditions the first, characterized by a pH of 3.0, Cr (VI) concentration at 50 mg/L, and 25 min, yielded a Cr (VI) removal of 99.7%. The second optimal condition emerged at pH 9.0, with Cr (VI) concentrations of 10 mg/L and 5 min, achieving a Cr (VI) removal of 99.5%. This study highlights the potential of the GAP-FeNP to synergistically accelerate Cr (VI) removal by the 3DEF process, allowing faster elimination and expansion of the alkaline (pH 9.0) applicability. PRACTITIONER POINTS The required time for >99% of Cr (VI) removal by the GAP-FeNP/3DEF process was shortened from 25 to 5 min. EF process with GAP-FeNP reduces the time necessary for Cr (VI) removal, which is 67% faster than conventional methods. EF process using GAP-FeNP removed >94% of Cr (VI) after 25 min for all initial Cr (VI) concentrations and pH treatments. Cr (VI) removal by the GAP-FeNP/3DEF process was >98% at a pH of 9.0, widening the solution pH applicability.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Nanopartículas
/
Ferro
Idioma:
En
Revista:
Water Environ Res
Assunto da revista:
SAUDE AMBIENTAL
/
TOXICOLOGIA
Ano de publicação:
2024
Tipo de documento:
Article
País de afiliação:
Guatemala
País de publicação:
Estados Unidos