Your browser doesn't support javascript.
loading
Interface fails and Young's module approximation of multilayer flexible devices through finite element method.
Méndez-Hernández, Julet; Loeza-Poot, Mariely; Vidal-Lesso, Agustín; Hernández-Pérez, Adrián; Hernández-Rodríguez, Eric.
Afiliação
  • Méndez-Hernández J; Universidad de Guanajuato, Departamento de Ingeniería Mecánica, carretera Salamanca - Valle de Santiago km 3.5 + 1.8, Comunidad de Palo Blanco, C.P. 36885, Salamanca, Guanajuato, Mexico.
  • Loeza-Poot M; Universidad de Guanajuato, Departamento de Ingeniería Mecánica, carretera Salamanca - Valle de Santiago km 3.5 + 1.8, Comunidad de Palo Blanco, C.P. 36885, Salamanca, Guanajuato, Mexico.
  • Vidal-Lesso A; Universidad de Guanajuato, Departamento de Ingeniería Mecánica, carretera Salamanca - Valle de Santiago km 3.5 + 1.8, Comunidad de Palo Blanco, C.P. 36885, Salamanca, Guanajuato, Mexico.
  • Hernández-Pérez A; Tecnológico Nacional de México/I.T. Mérida, Departamento de Ciencias de la Tierra, Av. Tecnológico km 4.5 S/N, C.P. 97118, Mérida, Yucatán, Mexico.
  • Hernández-Rodríguez E; Universidad de Guanajuato, Departamento de Ingeniería Mecánica, carretera Salamanca - Valle de Santiago km 3.5 + 1.8, Comunidad de Palo Blanco, C.P. 36885, Salamanca, Guanajuato, Mexico.
Heliyon ; 10(4): e26257, 2024 Feb 29.
Article em En | MEDLINE | ID: mdl-38375298
ABSTRACT
Electronic flexible devices are prone to degrade their electrical performance or lose functionality when subjected to deformations. Brittle fracture is a common damaging effect observed in devices composed of low-thickness layered materials stacked onto a flexible substrate by dissimilar mechanical properties interaction. This work studies the mechanical behavior of Organic Flexible Solar Cells (OFSC) with a heterostructure PET/ITO/P3HTPCBM/Ag subjected to uniaxial displacements through an experimental and numeric point of view. Experimental showed that damage proceeds in two ways. First, the formation of a grid crack pattern begins at the ITO layer, and second, the delamination in the ITO/P3HTPCBM interface. The numerical model analyzed the force and displacements and the absorption/dissipation of strain energy on layers and interfaces of the device. The comparison of the global Young's module for experimental and numeric studies validated the numeric analysis, with results of 4.16 ± 0.05 GPa for experimental and 4.36 ± 0.15 GPa for numeric. Additionally, the model associates the ITO layer with the highest strain energy dissipation or the most prone to failure, which agrees with the experiments. Then, the model successfully predicts the mechanical behavior of OFSC and represents a valuable tool for studying flexible devices and predicting the appearance of mechanical damage when subjected to uniaxial deformations, even being able to avoid potential damage changing parameters such as the thickness of the layers.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Heliyon Ano de publicação: 2024 Tipo de documento: Article País de afiliação: México País de publicação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Heliyon Ano de publicação: 2024 Tipo de documento: Article País de afiliação: México País de publicação: Reino Unido