Your browser doesn't support javascript.
loading
Bottom-up construction and screening of algae-bacteria consortia for pollutant biodegradation.
Cai, Zongting; Karunakaran, Esther; Pandhal, Jagroop.
Afiliação
  • Cai Z; Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield, United Kingdom.
  • Karunakaran E; Grantham Centre for Sustainable Futures, The University of Sheffield, Sheffield, United Kingdom.
  • Pandhal J; Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield, United Kingdom.
Front Microbiol ; 15: 1349016, 2024.
Article em En | MEDLINE | ID: mdl-38389536
ABSTRACT
Microbial communities have been used as important biological tools for a variety of purposes associated with agriculture, the food industry and human health. Artificial engineering of microbial communities is an emerging field of research motivated by finding stable and efficient microbial systems. However, the successful design of microbial communities with desirable functions not only requires profound understanding of microbial activities, but also needs efficient approaches to piece together the known microbial traits to give rise to more complex systems. This study demonstrates the bottom-up integration of environmentally isolated phototrophic microalgae and chemotrophic bacteria as artificial consortia to bio-degrade selected volatile organic compounds (VOCs). A high throughput screening method based on 96-well plate format was developed for discovering consortia with bioremediation potential. Screened exemplar consortia were verified for VOCs degradation performance, among these, certain robust consortia were estimated to have achieved efficiencies of 95.72% and 92.70% and near 100% removal (7 days) of benzene, toluene, and phenol, respectively, with initial concentrations of 100 mg/L. VOCs degradation by consortia was mainly attributed to certain bacteria including Rhodococcus erythropolis, and Cupriavidus metallidurans, and directly contributed to the growth of microalgae Coelastrella terrestris (R = 0.82, p < 0.001). This work revealed the potential of converting VOCs waste into algal biomass by algae-bacteria consortia constructed through a bottom-up approach. The screening method enables rapid shortlisting of consortia combinatorial scenarios without prior knowledge about the individual strains or the need for interpreting complex microbial interactions.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Front Microbiol / Front. microbiol / Frontiers in microbiology Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Reino Unido País de publicação: Suíça

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Front Microbiol / Front. microbiol / Frontiers in microbiology Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Reino Unido País de publicação: Suíça