Your browser doesn't support javascript.
loading
Extensive post-transcriptional regulation revealed by integrative transcriptome and proteome analyses in salicylic acid-induced flowering in duckweed (Lemna gibba).
Fu, Lili; Tan, Deguan; Sun, Xuepiao; Ding, Zehong; Zhang, Jiaming.
Afiliação
  • Fu L; Institute of Tropical Bioscience and Biotechnology, MOA Key Laboratory of Tropical Crops Biology and Genetic Resources, Hainan Bioenergy Center, Chinese Academy of Tropical Agricultural Sciences, Haikou, China.
  • Tan D; Hainan Academy of Tropical Agricultural Resource, Chinese Academy of Tropical Agricultural Sciences, Haikou, China.
  • Sun X; Institute of Tropical Bioscience and Biotechnology, MOA Key Laboratory of Tropical Crops Biology and Genetic Resources, Hainan Bioenergy Center, Chinese Academy of Tropical Agricultural Sciences, Haikou, China.
  • Ding Z; Hainan Academy of Tropical Agricultural Resource, Chinese Academy of Tropical Agricultural Sciences, Haikou, China.
  • Zhang J; Institute of Tropical Bioscience and Biotechnology, MOA Key Laboratory of Tropical Crops Biology and Genetic Resources, Hainan Bioenergy Center, Chinese Academy of Tropical Agricultural Sciences, Haikou, China.
Front Plant Sci ; 15: 1331949, 2024.
Article em En | MEDLINE | ID: mdl-38390296
ABSTRACT
Duckweed is an aquatic model plant with tremendous potential in industrial and agricultural applications. Duckweed rarely flowers which significantly hinders the resource collection and heterosis utilization. Salicylic acid (SA) can significantly induce duckweed to flower; however, the underlying regulatory mechanisms remain largely unknown. In this work, transcriptome and proteome were conducted in parallel to examine the expression change of genes and proteins in Lemna gibba under SA treatment. A high-quality reference transcriptome was generated using Iso-Seq strategy, yielding 42,281 full-length transcripts. A total of 422, 423, and 417 differentially expressed genes (DEGs), as well as 213, 51, and 92 differentially expressed proteins (DEPs), were identified at flower induction, flower initiation, and flowering stages by ssRNA-seq and iTRAQ methods. Most DEGs and DEPs were only regulated at either the transcriptomic or proteomic level. Additionally, DEPs exhibited low expression correlations with the corresponding mRNAs, suggesting that post-transcriptional regulation plays a pivotal role in SA-induced flowering in L. gibba. Specifically, the genes related to photosynthesis, stress, and hormone metabolism were mainly regulated at the mRNA level, those associated with mitochondrial electron transport / ATP synthesis, nucleotide synthesis, and secondary metabolism were regulated at the protein level, while those related to redox metabolism were regulated at the mRNA and/or protein levels. The post-transcriptional regulation of genes relevant to hormone synthesis, transcription factors, and flowering was also extensively analyzed and discussed. This is the first study of integrative transcriptomic and proteomic analyses in duckweed, providing novel insights of post-transcriptional regulation in SA-induced flowering of L. gibba.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Front Plant Sci Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China País de publicação: Suíça

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Front Plant Sci Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China País de publicação: Suíça