Your browser doesn't support javascript.
loading
A comparative study of CNN-capsule-net, CNN-transformer encoder, and Traditional machine learning algorithms to classify epileptic seizure.
Holguin-Garcia, Sergio Alejandro; Guevara-Navarro, Ernesto; Daza-Chica, Alvaro Eduardo; Patiño-Claro, Maria Alejandra; Arteaga-Arteaga, Harold Brayan; Ruz, Gonzalo A; Tabares-Soto, Reinel; Bravo-Ortiz, Mario Alejandro.
Afiliação
  • Holguin-Garcia SA; Departamento de Electrónica y Automatización, Universidad Autónoma de Manizales, Manizales, 170001, Caldas, Colombia.
  • Guevara-Navarro E; Departamento de Electrónica y Automatización, Universidad Autónoma de Manizales, Manizales, 170001, Caldas, Colombia.
  • Daza-Chica AE; Departamento de Electrónica y Automatización, Universidad Autónoma de Manizales, Manizales, 170001, Caldas, Colombia.
  • Patiño-Claro MA; Departamento de Electrónica y Automatización, Universidad Autónoma de Manizales, Manizales, 170001, Caldas, Colombia.
  • Arteaga-Arteaga HB; Departamento de Electrónica y Automatización, Universidad Autónoma de Manizales, Manizales, 170001, Caldas, Colombia.
  • Ruz GA; Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Santiago, 7941169, Chile.
  • Tabares-Soto R; Center of Applied Ecology and Sustainability (CAPES), Santiago, 8331150, Chile.
  • Bravo-Ortiz MA; Data Observatory Foundation, Santiago, 7510277, Chile.
BMC Med Inform Decis Mak ; 24(1): 60, 2024 Mar 01.
Article em En | MEDLINE | ID: mdl-38429718
ABSTRACT

INTRODUCTION:

Epilepsy is a disease characterized by an excessive discharge in neurons generally provoked without any external stimulus, known as convulsions. About 2 million people are diagnosed each year in the world. This process is carried out by a neurological doctor using an electroencephalogram (EEG), which is lengthy.

METHOD:

To optimize these processes and make them more efficient, we have resorted to innovative artificial intelligence methods essential in classifying EEG signals. For this, comparing traditional models, such as machine learning or deep learning, with cutting-edge models, in this case, using Capsule-Net architectures and Transformer Encoder, has a crucial role in finding the most accurate model and helping the doctor to have a faster diagnosis.

RESULT:

In this paper, a comparison was made between different models for binary and multiclass classification of the epileptic seizure detection database, achieving a binary accuracy of 99.92% with the Capsule-Net model and a multiclass accuracy with the Transformer Encoder model of 87.30%.

CONCLUSION:

Artificial intelligence is essential in diagnosing pathology. The comparison between models is helpful as it helps to discard those that are not efficient. State-of-the-art models overshadow conventional models, but data processing also plays an essential role in evaluating the higher accuracy of the models.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Inteligência Artificial / Epilepsia Limite: Humans Idioma: En Revista: BMC Med Inform Decis Mak Assunto da revista: INFORMATICA MEDICA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Colômbia País de publicação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Inteligência Artificial / Epilepsia Limite: Humans Idioma: En Revista: BMC Med Inform Decis Mak Assunto da revista: INFORMATICA MEDICA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Colômbia País de publicação: Reino Unido