Your browser doesn't support javascript.
loading
Development of 3D printable stabilized earth-based construction materials using excavated soil: Evaluation of fresh and hardened properties.
Soda, Prabhath Ranjan Kumar; Dwivedi, Ashutosh; C M, Sahana; Gupta, Souradeep.
Afiliação
  • Soda PRK; Centre for Sustainable Technologies, Indian Institute of Science, Bangalore 560012, India.
  • Dwivedi A; Centre for Sustainable Technologies, Indian Institute of Science, Bangalore 560012, India.
  • C M S; Centre for Sustainable Technologies, Indian Institute of Science, Bangalore 560012, India.
  • Gupta S; Centre for Sustainable Technologies, Indian Institute of Science, Bangalore 560012, India. Electronic address: souradeep@iisc.ac.in.
Sci Total Environ ; 924: 171654, 2024 May 10.
Article em En | MEDLINE | ID: mdl-38490425
ABSTRACT
Soil excavated during construction and demolition can be utilized to reduce the demand for natural sand in 3D printed constructions. This research attempts to systematically develop 3D printable stabilized earth-based materials using excavated soil (clay content of 42.5 %) as 25 % and 50 % replacement of natural sand, and examine their compressive strength, water permeable porosity, and moisture sensitivity. The effectiveness of two binder systems - Ordinary Portland Cement (OPC) and a combination of OPC and ground granulated blast furnace slag (GGBS used to replace 30 % OPC by mass), was investigated. Non-expansive clay in the soil leads to a steeper reduction in apparent viscosity, 12-15 % higher flow retention, and 50-60 % lower plastic viscosity of soil-based mixes, thus contributing to superior extrusion quality at 35-40 mm lower initial flow than OPC-sand and OPC-GGBS-sand mixes. The addition of GGBS, due to its irregular particle morphologies and interlocking effects, further enhances the shape retention of the printed layers by 8-26 % compared to OPC-soil mortars. The structural build-ups in OPC-soil and OPC-GGBS-soil mortars increase with the increase in clay content, which enabled buildability up to a height of 1.2 m compared to only 0.51-0.55 m for OPC-sand and OPC-GGBS-sand mortars. Higher water demand due to the addition of natural clay increases the porosity of 3D printed OPC-soil mortars, thereby lowering compressive strength and increasing moisture sensitivity. However, a blend of OPC and GGBS substantially reduces the moisture sensitivity of the printed mortars at 28-day age, attributed to better stabilization of clay through hydraulic and pozzolanic action of GGBS. 28-day wet compressive strength of 14-25 MPa is obtained for the printed soil-based mixes depending on the soil dosage and loading direction. In summary, the study provides a feasible solution for the 3D printing of stabilized earth structures with lower demand for natural sand and OPC.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Sci Total Environ Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Índia País de publicação: Holanda

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Sci Total Environ Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Índia País de publicação: Holanda