Your browser doesn't support javascript.
loading
Solvent Isotherms and Structural Transitions in Nanoparticle Superlattice Assembly.
Missoni, Leandro L; Upah, Alex; Zaldívar, Gervasio; Travesset, Alex; Tagliazucchi, Mario.
Afiliação
  • Missoni LL; Departamento de Química Inorgánica Analítica y Química Física, Ciudad Universitaria, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, C1428EGA Buenos Aires, Argentina.
  • Upah A; Instituto de Química de los Materiales, Ambiente y Energía (INQUIMAE), Ciudad Universitaria, CONICET, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Pabellón 2, C1428EGA Buenos Aires, Argentina.
  • Zaldívar G; Department of Physics and Astronomy, Iowa State University and Ames National Laboratory, Ames, Iowa 50011, United States.
  • Travesset A; Pritzker School of Molecular Engineering, University of Chicago, 5640 S. Ellis Avenue, Chicago, Illinois 60637, United States.
  • Tagliazucchi M; Department of Physics and Astronomy, Iowa State University and Ames National Laboratory, Ames, Iowa 50011, United States.
Nano Lett ; 24(17): 5270-5276, 2024 May 01.
Article em En | MEDLINE | ID: mdl-38647381
ABSTRACT
We introduce a Molecular Theory for Compressible Fluids (MOLT-CF) that enables us to compute free energies and other thermodynamic functions for nanoparticle superlattices with any solvent content, including the dry limit. Quantitative agreement is observed between MOLT-CF and united-atom molecular dynamics simulations performed to assess the reliability and precision of the theory. Among other predictions, MOLT-CF shows that the amount of solvent within the superlattice decreases approximately linearly with its vapor pressure and that in the late stages of drying, solvent-filled voids form at lattice interstitials. Applied to single-component superlattices, MOLT-CF predicts fcc-to-bcc Bain transitions for decreasing vapor pressure and for increasing ligand length, both in agreement with experimental results. We explore the stability of other single-component phases and show that the C14 Frank-Kasper phase, which has been reported in experiments, is not a global free-energy minimum. Implications for precise assembly and prediction of multicomponent nanoparticle systems are discussed.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nano Lett Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Argentina País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nano Lett Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Argentina País de publicação: Estados Unidos