Your browser doesn't support javascript.
loading
Vesicle protrusion induced by antimicrobial peptides suggests common carpet mechanism for short antimicrobial peptides.
Park, Peter; Matsubara, Danilo K; Barzotto, Domenico R; Lima, Filipe S; Chaimovich, Hernan; Marrink, Siewert J; Cuccovia, Iolanda M.
Afiliação
  • Park P; Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil.
  • Matsubara DK; Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, 9747 AG, Groningen, the Netherlands.
  • Barzotto DR; Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil.
  • Lima FS; Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil.
  • Chaimovich H; Departamento de Química Fundamental, Centro de Ciências Exatas e da Natureza, Universidade Federal de Pernambuco, Recife, Brazil.
  • Marrink SJ; Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil.
  • Cuccovia IM; Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, 9747 AG, Groningen, the Netherlands. s.j.marrink@rug.nl.
Sci Rep ; 14(1): 9701, 2024 04 27.
Article em En | MEDLINE | ID: mdl-38678109
ABSTRACT
Short-cationic alpha-helical antimicrobial peptides (SCHAMPs) are promising candidates to combat the growing global threat of antimicrobial resistance. They are short-sequenced, selective against bacteria, and have rapid action by destroying membranes. A full understanding of their mechanism of action will provide key information to design more potent and selective SCHAMPs. Molecular Dynamics (MD) simulations are invaluable tools that provide detailed insights into the peptide-membrane interaction at the atomic- and meso-scale level. We use atomistic and coarse-grained MD to look into the exact steps that four promising SCHAMPs-BP100, Decoralin, Neurokinin-1, and Temporin L-take when they interact with membranes. Following experimental set-ups, we explored the effects of SCHAMPs on anionic membranes and vesicles at multiple peptide concentrations. Our results showed all four peptides shared similar binding steps, initially binding to the membrane through electrostatic interactions and then flipping on their axes, dehydrating, and inserting their hydrophobic moieties into the membrane core. At higher concentrations, fully alpha-helical peptides induced membrane budding and protrusions. Our results suggest the carpet mode of action is fit for the description of SCHAMPs lysis activity and discuss the importance of large hydrophobic residues in SCHAMPs design and activity.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Peptídeos Catiônicos Antimicrobianos / Simulação de Dinâmica Molecular Idioma: En Revista: Sci Rep / Sci. rep. (Nat. Publ. Group) / Scientific reports (Nature Publishing Group) Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Brasil País de publicação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Peptídeos Catiônicos Antimicrobianos / Simulação de Dinâmica Molecular Idioma: En Revista: Sci Rep / Sci. rep. (Nat. Publ. Group) / Scientific reports (Nature Publishing Group) Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Brasil País de publicação: Reino Unido