Your browser doesn't support javascript.
loading
A novel fluorescent material K3NbOF6: Mn4+ for light-emitting diode devices.
Zhou, Hui; Wang, Ruiyang; Mi, Xiaoyun; Yu, Xiaofang.
Afiliação
  • Zhou H; School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, People's Republic of China; Changchun University of Science and Technology, Chongqing 130022, People's Republic of China.
  • Wang R; School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, People's Republic of China; Changchun University of Science and Technology, Chongqing 130022, People's Republic of China.
  • Mi X; School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, People's Republic of China; Changchun University of Science and Technology, Chongqing 130022, People's Republic of China. Electronic address: mixiaoyun@126.com.
  • Yu X; School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, People's Republic of China; Changchun University of Science and Technology, Chongqing 130022, People's Republic of China. Electronic address: yuxiaofang1995@163.com.
Spectrochim Acta A Mol Biomol Spectrosc ; 320: 124619, 2024 Nov 05.
Article em En | MEDLINE | ID: mdl-38880072
ABSTRACT
A series of K3Nb1-xOF6xMn4+ fluorescent materials were prepared by the cation exchange method. Phase structure, morphology, emission, excitation spectrum and LED packaging of fluorescent materials were tested. The fluorescent material particles are micron-sized (5 µm-20 µm) and have a micro-rod morphology. It has two absorption bands, with the blue light region (∼468 nm) being stronger than the ultraviolet region (∼370 nm). Under the excitation of 468 nm, it shows good narrowband emission in the red light region, mainly with anti-stokes v6 (∼627 nm), which is caused by the double barrier of the 2Eg→4A2g transition broken by the coupling effect of electron and phonon. The optimum doping concentration was 9.1 %, and as the concentration increased again, the dipole-dipole interaction between Mn4+ resulted in concentration quenching. When the fluorescent material operates at high temperature (150 ℃), the emission intensity drops to 50.2 % of which at room temperature. At high temperature, the electrons absorb a large amount of heat energy, and the non-radiation transition to 4A2g energy level causes the thermal quenching effect. In addition, the sample also showed good water stability, after 1 h of hydrolysis, the luminescence intensity decreased to 85.6 % of the initial value. The use of LED packaging with fluorescent materials and InGaN-YAGCe3+ can effectively reduce the color temperature of LED from 6856 K to 3745 K, and enhance the Color index from 61.5 % to 76.8 %. Which has great potential for development in the fields of plant growth and backlight display technology.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Spectrochim Acta A Mol Biomol Spectrosc Assunto da revista: BIOLOGIA MOLECULAR Ano de publicação: 2024 Tipo de documento: Article País de publicação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Spectrochim Acta A Mol Biomol Spectrosc Assunto da revista: BIOLOGIA MOLECULAR Ano de publicação: 2024 Tipo de documento: Article País de publicação: Reino Unido