Your browser doesn't support javascript.
loading
Nanoscale thermal imaging of hot electrons by cryogenic terahertz scanning noise microscopy.
Weng, Qianchun; Deng, Weijie; Komiyama, Susumu; Sasaki, Toru; Imada, Hiroshi; Lu, Wei; Hosako, Iwao; Kim, Yousoo.
Afiliação
  • Weng Q; Surface and Interface Science Laboratory, RIKEN, Wako, Saitama 351-0198, Japan.
  • Deng W; PRESTO, Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan.
  • Komiyama S; School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.
  • Sasaki T; State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, The Chinese Academy of Sciences, Shanghai 200083, China.
  • Imada H; Surface and Interface Science Laboratory, RIKEN, Wako, Saitama 351-0198, Japan.
  • Lu W; Terahertz Technology Research Center, National Institute of Information and Communications Technology, Nukui-Kitamachi 4-2-1, Koganei, Tokyo 184-8795, Japan.
  • Hosako I; UNISOKU Co., Ltd., Hirakata, Osaka 573-0131, Japan.
  • Kim Y; Surface and Interface Science Laboratory, RIKEN, Wako, Saitama 351-0198, Japan.
Rev Sci Instrum ; 95(6)2024 Jun 01.
Article em En | MEDLINE | ID: mdl-38888400
ABSTRACT
Nanoscale thermal imaging and temperature detection are of fundamental importance in diverse scientific and technological realms. Most nanoscale thermometry techniques focus on probing the temperature of lattice or phonons and are insensitive to nonequilibrium electrons, commonly referred to as "hot electrons." While terahertz scanning noise microscopy (SNoiM) has been demonstrated to be powerful in the thermal imaging of hot electrons, prior studies have been limited to room temperature. In this work, we report the development of a cryogenic SNoiM (Cryo-SNoiM) tailored for quantitative hot electron temperature detection at low temperatures. The microscope features a special two-chamber design where the sensitive terahertz detector, housed in a vacuum chamber, is efficiently cooled to ∼5 K using a pulse tube cryocooler. In a separate chamber, the atomic force microscope and the sample can be maintained at room temperature under ambient/vacuum conditions or cooled to ∼110 K via liquid nitrogen. This unique dual-chamber cooling system design enhances the efficacy of SNoiM measurements at low temperatures. It not only facilitates the pre-selection of tips at room temperature before cooling but also enables the quantitative derivation of local electron temperature without reliance on any adjustable parameters. The performance of Cryo-SNoiM is demonstrated through imaging the distribution of hot electrons in a cold, self-heated narrow metal wire. This instrumental innovation holds great promise for applications in imaging low-temperature hot electron dynamics and nonequilibrium transport phenomena across various material systems.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Rev Sci Instrum Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Japão País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Rev Sci Instrum Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Japão País de publicação: Estados Unidos