Your browser doesn't support javascript.
loading
Neurophysiologically Meaningful Motor Imagery EEG Simulation With Applications to Data Augmentation.
Article em En | MEDLINE | ID: mdl-38900612
ABSTRACT
Motor imagery-based Brain-Computer Interfaces (MI-BCIs) have gained a lot of attention due to their potential usability in neurorehabilitation and neuroprosthetics. However, the accurate recognition of MI patterns in electroencephalography signals (EEG) is hindered by several data-related limitations, which restrict the practical utilization of these systems. Moreover, leveraging deep learning (DL) models for MI decoding is challenged by the difficulty of accessing user-specific MI-EEG data on large scales. Simulated MI-EEG signals can be useful to address these issues, providing well-defined data for the validation of decoding models and serving as a data augmentation approach to improve the training of DL models. While substantial efforts have been dedicated to implementing effective data augmentation strategies and model-based EEG signal generation, the simulation of neurophysiologically plausible EEG-like signals has not yet been exploited in the context of data augmentation. Furthermore, none of the existing approaches have integrated user-specific neurophysiological information during the data generation process. Here, we present PySimMIBCI, a framework for generating realistic MI-EEG signals by integrating neurophysiologically meaningful activity into biophysical forward models. By means of PySimMIBCI, different user capabilities to control an MI-BCI can be simulated and fatigue effects can be included in the generated EEG. Results show that our simulated data closely resemble real data. Moreover, a proposed data augmentation strategy based on our simulated user-specific data significantly outperforms other state-of-the-art augmentation approaches, enhancing DL models performance by up to 15%.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Algoritmos / Simulação por Computador / Eletroencefalografia / Interfaces Cérebro-Computador / Imaginação Limite: Humans Idioma: En Revista: IEEE Trans Neural Syst Rehabil Eng Assunto da revista: ENGENHARIA BIOMEDICA / REABILITACAO Ano de publicação: 2024 Tipo de documento: Article País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Algoritmos / Simulação por Computador / Eletroencefalografia / Interfaces Cérebro-Computador / Imaginação Limite: Humans Idioma: En Revista: IEEE Trans Neural Syst Rehabil Eng Assunto da revista: ENGENHARIA BIOMEDICA / REABILITACAO Ano de publicação: 2024 Tipo de documento: Article País de publicação: Estados Unidos