Your browser doesn't support javascript.
loading
Acinonyx jubatus-Inspired Quadruped Robotics: Integrating Neural Oscillators for Enhanced Locomotion Control.
Hernández-Flores, Eric Alberto; Hernández-Rodríguez, Yazmín Mariela; Munguía-Fuentes, Rosario; Bayareh-Mancilla, Rafael; Cigarroa-Mayorga, Oscar Eduardo.
Afiliação
  • Hernández-Flores EA; Sistemas Autónomos de Navegación Aérea y Submarina (SANAS), Unidad Mixta Internacional (UMI), Centro de Investigación y de Estudios Avanzados del IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Gustavo A. Madero, Ciudad de México 07360, Mexico.
  • Hernández-Rodríguez YM; Unidad Profesional Interdisciplinaria en Ingeniería y Tecnologías Avanzadas del Instituto Politécnico Nacional (UPIITA-IPN), Av. Instituto Politécnico Nacional 2580, Col. San Pedro Zacatenco, Gustavo A. Madero, Ciudad de México 07360, Mexico.
  • Munguía-Fuentes R; Unidad Profesional Interdisciplinaria en Ingeniería y Tecnologías Avanzadas del Instituto Politécnico Nacional (UPIITA-IPN), Av. Instituto Politécnico Nacional 2580, Col. San Pedro Zacatenco, Gustavo A. Madero, Ciudad de México 07360, Mexico.
  • Bayareh-Mancilla R; Unidad Profesional Interdisciplinaria en Ingeniería y Tecnologías Avanzadas del Instituto Politécnico Nacional (UPIITA-IPN), Av. Instituto Politécnico Nacional 2580, Col. San Pedro Zacatenco, Gustavo A. Madero, Ciudad de México 07360, Mexico.
  • Cigarroa-Mayorga OE; Unidad Profesional Interdisciplinaria en Ingeniería y Tecnologías Avanzadas del Instituto Politécnico Nacional (UPIITA-IPN), Av. Instituto Politécnico Nacional 2580, Col. San Pedro Zacatenco, Gustavo A. Madero, Ciudad de México 07360, Mexico.
Biomimetics (Basel) ; 9(6)2024 May 27.
Article em En | MEDLINE | ID: mdl-38921198
ABSTRACT
This study presents the design, simulation, and prototype creation of a quadruped robot inspired by the Acinonyx jubatus (cheetah), specifically designed to replicate its distinctive walking, trotting, and galloping locomotion patterns. Following a detailed examination of the cheetah's skeletal muscle anatomy and biomechanics, a simplified model of the robot with 12 degrees of freedom was conducted. The mathematical transformation hierarchy model was established, and direct kinematics were simulated. A bio-inspired control approach was introduced, employing a Central Pattern Generator model based on Wilson-Cowan neural oscillators for each limb, interconnected by synaptic weights. This approach assisted in the simulation of oscillatory signals for relative phases corresponding to four distinct gaits in a system-level simulation platform. The design phase was conducted using CAD software (SolidWorks 2018), resulting in a 13-scale robot mirroring the cheetah's actual proportions. Movement simulations were performed in a virtual mechanics software environment, leading to the construction of a prototype measuring 35.5 cm in length, 21 cm in width, 27 cm in height (when standing), and weighing approximately 2.1 kg. The experimental validation of the prototype's limb angular positions and trajectories was achieved through the image processing of video-recorded movements, demonstrating a high correlation (0.9025 to 0.9560) in joint angular positions, except for the knee joint, where a correlation of 0.7071 was noted. This comprehensive approach from theoretical analysis to practical implementation showcases the potential of bio-inspired robotics in emulating complex biological locomotion.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Biomimetics (Basel) Ano de publicação: 2024 Tipo de documento: Article País de afiliação: México País de publicação: Suíça

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Biomimetics (Basel) Ano de publicação: 2024 Tipo de documento: Article País de afiliação: México País de publicação: Suíça