Your browser doesn't support javascript.
loading
Integrated Transfer Learning and Multitask Learning Strategies to Construct Graph Neural Network Models for Predicting Bioaccumulation Parameters of Chemicals.
Xiao, Zijun; Zhu, Minghua; Chen, Jingwen; You, Zecang.
Afiliação
  • Xiao Z; Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
  • Zhu M; Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
  • Chen J; Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
  • You Z; Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
Environ Sci Technol ; 58(35): 15650-15660, 2024 Sep 03.
Article em En | MEDLINE | ID: mdl-39051472
ABSTRACT
Accurate prediction of parameters related to the environmental exposure of chemicals is crucial for the sound management of chemicals. However, the lack of large data sets for training models may result in poor prediction accuracy and robustness. Herein, integrated transfer learning (TL) and multitask learning (MTL) was proposed for constructing a graph neural network (GNN) model (abbreviated as TL-MTL-GNN model) using n-octanol/water partition coefficients as a source domain. The TL-MTL-GNN model was trained to predict three bioaccumulation parameters based on enlarged data sets that cover 2496 compounds with at least one bioaccumulation parameter. Results show that the TL-MTL-GNN model outperformed single-task GNN models with and without the TL, as well as conventional machine learning models trained with molecular descriptors or fingerprints. Applicability domains were characterized by a state-of-the-art structure-activity landscape-based (abbreviated as ADSAL) methodology. The TL-MTL-GNN model coupled with the optimal ADSAL was employed to predict bioaccumulation parameters for around 60,000 chemicals, with more than 13,000 compounds identified as bioaccumulative chemicals. The high predictive accuracy and robustness of the TL-MTL-GNN model demonstrate the feasibility of integrating the TL and MTL strategy in modeling small-sized data sets. The strategy holds significant potential for addressing small data challenges in modeling environmental chemicals.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Redes Neurais de Computação / Aprendizado de Máquina Idioma: En Revista: Environ Sci Technol / Environ. sci. technol / Environmental science & technology Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Redes Neurais de Computação / Aprendizado de Máquina Idioma: En Revista: Environ Sci Technol / Environ. sci. technol / Environmental science & technology Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China País de publicação: Estados Unidos