Your browser doesn't support javascript.
loading
Mitigation of uranium toxicity in rice by Sphingopyxis sp. YF1: Evidence from growth, ultrastructure, subcellular distribution, and physiological characteristics.
Liu, Jun; Fan, Xinting; Ni, Juan; Cai, Meihan; Cai, Danping; Jiang, Yuanyuan; Mo, Aili; Miran, Waheed; Peng, Tangjian; Long, Xizi; Yang, Fei.
Afiliação
  • Liu J; Department of Cell Biology and Genetics, Institute of Cytology and Genetics, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining
  • Fan X; Department of Cell Biology and Genetics, Institute of Cytology and Genetics, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining
  • Ni J; Department of Cell Biology and Genetics, Institute of Cytology and Genetics, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining
  • Cai M; Department of Cell Biology and Genetics, Institute of Cytology and Genetics, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining
  • Cai D; The Key Laboratory of Typical Environmental Pollution and Health Hazards of Hunan Province, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
  • Jiang Y; The Key Laboratory of Typical Environmental Pollution and Health Hazards of Hunan Province, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
  • Mo A; Department of Cell Biology and Genetics, Institute of Cytology and Genetics, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining
  • Miran W; School of Chemical and Materials Engineering, National University of Sciences and Technology, Islamabad, 44000, Pakistan.
  • Peng T; Department of Cell Biology and Genetics, Institute of Cytology and Genetics, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining
  • Long X; Department of Cell Biology and Genetics, Institute of Cytology and Genetics, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining
  • Yang F; Department of Cell Biology and Genetics, Institute of Cytology and Genetics, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining
Plant Physiol Biochem ; 214: 108958, 2024 Sep.
Article em En | MEDLINE | ID: mdl-39053315
ABSTRACT
Uranium (U) contamination of rice is an urgent ecological and agricultural problem whose effective alleviation is in great demand. Sphingopyxis genus has been shown to remediate heavy metal-contaminated soils. Rare research delves into the mitigation of uranium (U) toxicity to rice by Sphingopyxis genus. In this study, we exposed rice seedlings for 7 days at U concentrations of 0, 10, 20, 40, and 80 mg L-1 with or without the Sphingopyxis sp. YF1 in the rice nutrient solution. Here, we firstly found YF1 colonized on the root of rice seedlings, significantly mitigated the growth inhibition, and counteracted the chlorophyll content reduction in leaves induced by U. When treated with 1.1 × 107 CFU mL-1 YF1 with the amendment of 10 mg L-1 U, the decrease of U accumulation in rice seedling roots and shoots was the largest among all treatments; reduced by 39.3% and 32.1%, respectively. This was associated with the redistribution of the U proportions in different organelle parts, leading to the alleviation of the U damage to the morphology and structure of rice root. Interestingly, we found YF1 significantly weakens the expression of antioxidant enzymes genes (CuZnSOD,CATA,POD), promotes the up-regulation of metal-transporters genes (OsHMA3 and OsHMA2), and reduces the lipid peroxidation damage induced by U in rice seedlings. In summary, YF1 is a plant-probiotic with potential applications for U-contaminated rice, benefiting producers and consumers.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Oryza / Urânio / Raízes de Plantas Idioma: En Revista: Plant Physiol Biochem / Plant, physiology and biochemistry / Plant. physiol. biochem Assunto da revista: BIOQUIMICA / BOTANICA Ano de publicação: 2024 Tipo de documento: Article País de publicação: França

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Oryza / Urânio / Raízes de Plantas Idioma: En Revista: Plant Physiol Biochem / Plant, physiology and biochemistry / Plant. physiol. biochem Assunto da revista: BIOQUIMICA / BOTANICA Ano de publicação: 2024 Tipo de documento: Article País de publicação: França