Your browser doesn't support javascript.
loading
Machine Learning for Predicting Chronic Renal Disease Progression in COVID-19 Patients with Acute Renal Injury: A Feasibility Study.
Gracida-Osorno, Carlos; Molina-Salinas, Gloria María; Góngora-Hernández, Roxana; Brito-Loeza, Carlos; Uc-Cachón, Andrés Humberto; Paniagua-Sierra, José Ramón.
Afiliação
  • Gracida-Osorno C; Servicio de Medicina Interna, Hospital General Regional No. 1, CMN Ignacio García Téllez, Instituto Mexicano del Seguro Social, Mérida 97150, Mexico.
  • Molina-Salinas GM; Unidad de Investigación Médica Yucatán, Hospital de Especialidades, CMN Ignacio García Téllez, Instituto Mexicano del Seguro Social, Mérida 97150, Mexico.
  • Góngora-Hernández R; Facultad de Matemáticas, Universidad Autónoma de Yucatán, Mérida 97119, Mexico.
  • Brito-Loeza C; Facultad de Matemáticas, Universidad Autónoma de Yucatán, Mérida 97119, Mexico.
  • Uc-Cachón AH; Unidad de Investigación Médica Yucatán, Hospital de Especialidades, CMN Ignacio García Téllez, Instituto Mexicano del Seguro Social, Mérida 97150, Mexico.
  • Paniagua-Sierra JR; Unidad de Investigación Médica en Enfermedades Nefrológicas, Hospital de Especialidades, CMN Siglo XXI, Instituto Mexicano del Seguro Social, México City 06720, Mexico.
Biomedicines ; 12(7)2024 Jul 08.
Article em En | MEDLINE | ID: mdl-39062084
ABSTRACT
This study aimed to determine the feasibility of applying machine-learning methods to assess the progression of chronic kidney disease (CKD) in patients with coronavirus disease (COVID-19) and acute renal injury (AKI). The study was conducted on patients aged 18 years or older who were diagnosed with COVID-19 and AKI between April 2020 and March 2021, and admitted to a second-level hospital in Mérida, Yucatán, México. Of the admitted patients, 47.92% died and 52.06% were discharged. Among the discharged patients, 176 developed AKI during hospitalization, and 131 agreed to participate in the study. The study's results indicated that the area under the receiver operating characteristic curve (AUC-ROC) for the four models was 0.826 for the support vector machine (SVM), 0.828 for the random forest, 0.840 for the logistic regression, and 0.841 for the boosting model. Variable selection methods were utilized to enhance the performance of the classifier, with the SVM model demonstrating the best overall performance, achieving a classification rate of 99.8% ± 0.1 in the training set and 98.43% ± 1.79 in the validation set in AUC-ROC values. These findings have the potential to aid in the early detection and management of CKD, a complication of AKI resulting from COVID-19. Further research is required to confirm these results.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Biomedicines Ano de publicação: 2024 Tipo de documento: Article País de afiliação: México País de publicação: Suíça

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Biomedicines Ano de publicação: 2024 Tipo de documento: Article País de afiliação: México País de publicação: Suíça