Your browser doesn't support javascript.
loading
Near infrared spectroscopy for cooking time classification of cassava genotypes.
Bandeira E Sousa, Massaine; Morales, Cinara Fernanda Garcia; Mbanjo, Edwige Gaby Nkouaya; Egesi, Chiedozie; de Oliveira, Eder Jorge.
Afiliação
  • Bandeira E Sousa M; Núcleo de Recursos Genéticos e Desenvolvimento de Variedades, Embrapa Mandioca e Fruticultura, Cruz das Almas, BA, Brazil.
  • Morales CFG; Núcleo de Recursos Genéticos e Desenvolvimento de Variedades, Embrapa Mandioca e Fruticultura, Cruz das Almas, BA, Brazil.
  • Mbanjo EGN; Cassava Breeding Unit, International Institute of Tropical Agriculture (IITA), Ibadan, Oyo State, Nigeria.
  • Egesi C; Cassava Breeding Unit, International Institute of Tropical Agriculture (IITA), Ibadan, Oyo State, Nigeria.
  • de Oliveira EJ; Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States.
Front Plant Sci ; 15: 1411772, 2024.
Article em En | MEDLINE | ID: mdl-39070913
ABSTRACT
Cooking time is a crucial determinant of culinary quality of cassava roots and incorporating it into the early stages of breeding selection is vital for breeders. This study aimed to assess the potential of near-infrared spectroscopy (NIRS) in classifying cassava genotypes based on their cooking times. Five cooking times (15, 20, 25, 30, and 40 minutes) were assessed and 888 genotypes evaluated over three crop seasons (2019/2020, 2020/2021, and 2021/2022). Fifteen roots from five plants per plot, featuring diameters ranging from 4 to 7 cm, were randomly chosen for cooking analysis and spectral data collection. Two root samples (15 slices each) per genotype were collected, with the first set aside for spectral data collection, processed, and placed in two petri dishes, while the second set was utilized for cooking assessment. Cooking data were classified into binary and multiclass variables (CT4C and CT6C). Two NIRs devices, the portable QualitySpec® Trek (QST) and the benchtop NIRFlex N-500 were used to collect spectral data. Classification of genotypes was carried out using the K-nearest neighbor algorithm (KNN) and partial least squares (PLS) models. The spectral data were split into a training set (80%) and an external validation set (20%). For binary variables, the classification accuracy for cassava cooking time was notably high ( R C a l 2 ranging from 0.72 to 0.99). Regarding multiclass variables, accuracy remained consistent across classes, models, and NIR instruments (~0.63). However, the KNN model demonstrated slightly superior accuracy in classifying all cooking time classes, except for the CT4C variable (QST) in the NoCook and 25 min classes. Despite the increased complexity associated with binary classification, it remained more efficient, offering higher classification accuracy for samples and facilitating the selection of the most relevant time or variables, such as cooking time ≤ 30 minutes. The accuracy of the optimal scenario for classifying samples with a cooking time of 30 minutes reached R C a l 2   = 0.86 and R V a l 2 = 0.84, with a Kappa value of 0.53. Overall, the models exhibited a robust fit for all cooking times, showcasing the significant potential of NIRs as a high-throughput phenotyping tool for classifying cassava genotypes based on cooking time.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Front Plant Sci Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Brasil País de publicação: Suíça

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Front Plant Sci Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Brasil País de publicação: Suíça