Your browser doesn't support javascript.
loading
Optimizing the Dielectric and Mechanical Performance of 3D-Printed Cellulose-Based Biocomposites and Bionanocomposites through Factorial Design for Electrical Insulation Application.
Lecoublet, Morgan; Ragoubi, Mohamed; Leblanc, Nathalie; Koubaa, Ahmed.
Afiliação
  • Lecoublet M; UniLaSalle, Unité de Recherche Transformations et Agro-Ressources (ULR 7519 UniLaSalle-Université d'Artois), 76130 Mont-Saint-Aignan, France.
  • Ragoubi M; de Biomatériaux, Campus de Rouyn-Noranda, Campus de Rouyn-Noranda, Université du Québec at Abitibi-Témiscamingue (UQAT), 445, boul. de l'Université, Rouyn-Noranda, QC J9X 5E4, Canada.
  • Leblanc N; UniLaSalle, Unité de Recherche Transformations et Agro-Ressources (ULR 7519 UniLaSalle-Université d'Artois), 76130 Mont-Saint-Aignan, France.
  • Koubaa A; UniLaSalle, Unité de Recherche Transformations et Agro-Ressources (ULR 7519 UniLaSalle-Université d'Artois), 76130 Mont-Saint-Aignan, France.
Polymers (Basel) ; 16(15)2024 Jul 25.
Article em En | MEDLINE | ID: mdl-39125145
ABSTRACT
Materials for low-permittivity and electrical insulation applications need to be re-engineered to achieve sustainable development. To address this challenge, the proposed study focused on the dielectric and mechanical optimization of 3D-printed cellulose-based composites for electrical insulation applications. Two different fillers, microcrystalline cellulose (MCC) and nanocrystalline cellulose (NCC), were used to create biocomposites and bionanocomposites, respectively, blended into a polylactic acid (PLA) matrix. The effects of infill ratio, printing temperature, and filler content on dielectric and mechanical properties were measured using an incomplete L9 (3^3) factorial design. The findings showed that the infill ratio was the most significant factor influencing the properties tested, directly attributable to the increase in material availability for polarization and mechanical performance. The second most influential factor was the filler content, increasing the polarity of the tested composites and decreasing the toughness of the biocomposites and bionanocomposites. Finally, printing temperature had no significant effect. Results for the biocomposites at a 50% infill ratio, 200 °C printing temperature, and a weight content of MCC of 15% gave a 60% higher tensile-mode stiffness than neat PLA printed under the same conditions, while exhibiting lower dielectric properties than neat PLA printed with a 100% infill ratio. These results pave the way for new lightweight materials for electrical insulation.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Polymers (Basel) Ano de publicação: 2024 Tipo de documento: Article País de afiliação: França País de publicação: Suíça

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Polymers (Basel) Ano de publicação: 2024 Tipo de documento: Article País de afiliação: França País de publicação: Suíça