Your browser doesn't support javascript.
loading
Enhanced Enantioselective Discrimination Regulated by Achiral Ligands in Chiral Metal-Organic Frameworks.
Niu, Xiaohui; Zhao, Rui; Yuan, Mei; Liu, Yongqi; Yang, Xing; Li, Hongxia; Xu, Hui; Wang, Kunjie.
Afiliação
  • Niu X; College of Petrochemical Technology, Lanzhou University of Technology, 730050 Lanzhou, PR China.
  • Zhao R; College of Petrochemical Technology, Lanzhou University of Technology, 730050 Lanzhou, PR China.
  • Yuan M; College of Petrochemical Technology, Lanzhou University of Technology, 730050 Lanzhou, PR China.
  • Liu Y; College of Petrochemical Technology, Lanzhou University of Technology, 730050 Lanzhou, PR China.
  • Yang X; College of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, PR China.
  • Li H; College of Petrochemical Technology, Lanzhou University of Technology, 730050 Lanzhou, PR China.
  • Xu H; College of Petrochemical Technology, Lanzhou University of Technology, 730050 Lanzhou, PR China.
  • Wang K; College of Petrochemical Technology, Lanzhou University of Technology, 730050 Lanzhou, PR China.
ACS Sens ; 9(8): 4069-4078, 2024 Aug 23.
Article em En | MEDLINE | ID: mdl-39136380
ABSTRACT
Enantioselective recognition is a fundamental property of chiral linkers in chiral metal-organic frameworks (CMOFs). However, clarifying the efficient enantioselective discrimination tailored by achiral linkers remains challenging to explain the chiral recognition mechanism and efficiency. Here, two CMOFs ([Zn2(l-Phe)2(bpa)2]n and [Zn2(l-Phe)2(bpe)2]n) with the completely different enantioselective recognition are synthesized from different nonchiral ligands and the same chiral ligands. The enantioselective recognition of CMOF is undoubtedly related to l-Phe, which differs in the hydrogen bonding to the Trp enantiomer. However, the electrochemical signals are weak and undifferentiated. [Zn2(l-Phe)2(bpe)2]n produces a flattened coplanar conformation with the -C═C- tether in the achiral ligand. The flattened achiral bpee ligand and its surrounding chiral phenylalanine molecules interact through multiple π-π stacking and hydrogen bonding, which together create a chiral sensor that facilitates the recognition of l-Trp. However, [Zn2(l-Phe)2(bpa)2]n produces a stepped conformation due to the -C-C- tether in the achiral ligand; despite the recognition effect of bpea, the recognition is unsatisfactory. Therefore, the chiral recognition of the two CMOFs stems from the synergistic effect between chiral and achiral ligands. This work shows that nonchiral ligands are also crucial in determining enantiomeric discrimination and opens up a new avenue for designing chiral materials.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Zinco / Estruturas Metalorgânicas Idioma: En Revista: ACS Sens Ano de publicação: 2024 Tipo de documento: Article País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Zinco / Estruturas Metalorgânicas Idioma: En Revista: ACS Sens Ano de publicação: 2024 Tipo de documento: Article País de publicação: Estados Unidos