Your browser doesn't support javascript.
loading
Development of machine learning-based personalized predictive models for risk evaluation of hepatocellular carcinoma in hepatitis B virus-related cirrhosis patients with low levels of serum alpha-fetoprotein.
Xu, Yuan; Zhang, Bei; Zhou, Fan; Yi, Ying-Ping; Yang, Xin-Lei; Ouyang, Xiao; Hu, Hui.
Afiliação
  • Xu Y; Medical Big Data Center, the Second Affiliated Hospital of Nanchang University, Nanchang, PR China.
  • Zhang B; Department of Gastroenterology, the Second Affiliated Hospital of Nanchang University, Nanchang, PR China.
  • Zhou F; Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Nanchang University, Nanchang, PR China.
  • Yi YP; Medical Big Data Center, the Second Affiliated Hospital of Nanchang University, Nanchang, PR China.
  • Yang XL; Medical Big Data Center, the Second Affiliated Hospital of Nanchang University, Nanchang, PR China.
  • Ouyang X; Quiclinic Technology Co., Ltd., Nanchang, PR China.
  • Hu H; Medical Big Data Center, the Second Affiliated Hospital of Nanchang University, Nanchang, PR China. Electronic address: huhuiefy@163.com.
Ann Hepatol ; 29(6): 101540, 2024 Aug 15.
Article em En | MEDLINE | ID: mdl-39151891
ABSTRACT
INTRODUCTION AND

OBJECTIVES:

The increasing incidence of hepatocellular carcinoma (HCC) in China is an urgent issue, necessitating early diagnosis and treatment. This study aimed to develop personalized predictive models by combining machine learning (ML) technology with a demographic, medical history, and noninvasive biomarker data. These models can enhance the decision-making capabilities of physicians for HCC in hepatitis B virus (HBV)-related cirrhosis patients with low serum alpha-fetoprotein (AFP) levels. PATIENTS AND

METHODS:

A total of 6,980 patients treated between January 2012 and December 2018 were included. Pre-treatment laboratory tests and clinical data were obtained. The significant risk factors for HCC were identified, and the relative risk of each variable affecting its diagnosis was calculated using ML and univariate regression analysis. The data set was then randomly partitioned into validation (20 %) and training sets (80 %) to develop the ML models.

RESULTS:

Twelve independent risk factors for HCC were identified using Gaussian naïve Bayes, extreme gradient boosting (XGBoost), random forest, and least absolute shrinkage and selection operation regression models. Multivariate analysis revealed that male sex, age >60 years, alkaline phosphate >150 U/L, AFP >25 ng/mL, carcinoembryonic antigen >5 ng/mL, and fibrinogen >4 g/L were the risk factors, whereas hypertension, calcium <2.25 mmol/L, potassium ≤3.5 mmol/L, direct bilirubin >6.8 µmol/L, hemoglobin <110 g/L, and glutamic-pyruvic transaminase >40 U/L were the protective factors in HCC patients. Based on these factors, a nomogram was constructed, showing an area under the curve (AUC) of 0.746 (sensitivity = 0.710, specificity=0.646), which was significantly higher than AFP AUC of 0.658 (sensitivity = 0.462, specificity=0.766). Compared with several ML algorithms, the XGBoost model had an AUC of 0.832 (sensitivity = 0.745, specificity=0.766) and an independent validation AUC of 0.829 (sensitivity = 0.766, specificity = 0.737), making it the top-performing model in both sets. The external validation results have proven the accuracy of the XGBoost model.

CONCLUSIONS:

The proposed XGBoost demonstrated a promising ability for individualized prediction of HCC in HBV-related cirrhosis patients with low-level AFP.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Ann Hepatol Assunto da revista: GASTROENTEROLOGIA Ano de publicação: 2024 Tipo de documento: Article País de publicação: México

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Ann Hepatol Assunto da revista: GASTROENTEROLOGIA Ano de publicação: 2024 Tipo de documento: Article País de publicação: México