Your browser doesn't support javascript.
loading
Bio-inspired Mechanically Responsive Smart Windows for Visible and Near-Infrared Multiwavelength Spectral Modulation.
Zhao, Fu-Xing; Wang, Mei-Hua; Huang, Zong-Ying; Zhu, Meng-Han; Chen, Chen; Pan, Qian-Hao; Yu, Bang; Wang, Yu-Tao; Guo, Xin; Qian, Yi-Jian; Zhang, Li-Wen; Qiu, Xiao-Jing; Sheng, Si-Zhe; He, Zhen; Wang, Jin-Long; Yu, Shu-Hong.
Afiliação
  • Zhao FX; Shenzhen Key Laboratory of Sustainable Biomimetic Materials, Guangdong Provincial Key Laboratory of Sustainable Biomimetic Materials and Green Energy, Department of Materials Science and Engineering, Institute of Innovative Materials, Guangming Advanced Research Institute, Southern University of Sci
  • Wang MH; Shenzhen Key Laboratory of Sustainable Biomimetic Materials, Guangdong Provincial Key Laboratory of Sustainable Biomimetic Materials and Green Energy, Department of Materials Science and Engineering, Institute of Innovative Materials, Guangming Advanced Research Institute, Southern University of Sci
  • Huang ZY; Shenzhen Key Laboratory of Sustainable Biomimetic Materials, Guangdong Provincial Key Laboratory of Sustainable Biomimetic Materials and Green Energy, Department of Materials Science and Engineering, Institute of Innovative Materials, Guangming Advanced Research Institute, Southern University of Sci
  • Zhu MH; Shenzhen Key Laboratory of Sustainable Biomimetic Materials, Guangdong Provincial Key Laboratory of Sustainable Biomimetic Materials and Green Energy, Department of Materials Science and Engineering, Institute of Innovative Materials, Guangming Advanced Research Institute, Southern University of Sci
  • Chen C; Shenzhen Key Laboratory of Sustainable Biomimetic Materials, Guangdong Provincial Key Laboratory of Sustainable Biomimetic Materials and Green Energy, Department of Materials Science and Engineering, Institute of Innovative Materials, Guangming Advanced Research Institute, Southern University of Sci
  • Pan QH; Shenzhen Key Laboratory of Sustainable Biomimetic Materials, Guangdong Provincial Key Laboratory of Sustainable Biomimetic Materials and Green Energy, Department of Materials Science and Engineering, Institute of Innovative Materials, Guangming Advanced Research Institute, Southern University of Sci
  • Yu B; Shenzhen Key Laboratory of Sustainable Biomimetic Materials, Guangdong Provincial Key Laboratory of Sustainable Biomimetic Materials and Green Energy, Department of Materials Science and Engineering, Institute of Innovative Materials, Guangming Advanced Research Institute, Southern University of Sci
  • Wang YT; Shenzhen Key Laboratory of Sustainable Biomimetic Materials, Guangdong Provincial Key Laboratory of Sustainable Biomimetic Materials and Green Energy, Department of Materials Science and Engineering, Institute of Innovative Materials, Guangming Advanced Research Institute, Southern University of Sci
  • Guo X; Shenzhen Key Laboratory of Sustainable Biomimetic Materials, Guangdong Provincial Key Laboratory of Sustainable Biomimetic Materials and Green Energy, Department of Materials Science and Engineering, Institute of Innovative Materials, Guangming Advanced Research Institute, Southern University of Sci
  • Qian YJ; Shenzhen Key Laboratory of Sustainable Biomimetic Materials, Guangdong Provincial Key Laboratory of Sustainable Biomimetic Materials and Green Energy, Department of Materials Science and Engineering, Institute of Innovative Materials, Guangming Advanced Research Institute, Southern University of Sci
  • Zhang LW; Shenzhen Key Laboratory of Sustainable Biomimetic Materials, Guangdong Provincial Key Laboratory of Sustainable Biomimetic Materials and Green Energy, Department of Materials Science and Engineering, Institute of Innovative Materials, Guangming Advanced Research Institute, Southern University of Sci
  • Qiu XJ; Shenzhen Key Laboratory of Sustainable Biomimetic Materials, Guangdong Provincial Key Laboratory of Sustainable Biomimetic Materials and Green Energy, Department of Materials Science and Engineering, Institute of Innovative Materials, Guangming Advanced Research Institute, Southern University of Sci
  • Sheng SZ; Shenzhen Key Laboratory of Sustainable Biomimetic Materials, Guangdong Provincial Key Laboratory of Sustainable Biomimetic Materials and Green Energy, Department of Materials Science and Engineering, Institute of Innovative Materials, Guangming Advanced Research Institute, Southern University of Sci
  • He Z; Shenzhen Key Laboratory of Sustainable Biomimetic Materials, Guangdong Provincial Key Laboratory of Sustainable Biomimetic Materials and Green Energy, Department of Materials Science and Engineering, Institute of Innovative Materials, Guangming Advanced Research Institute, Southern University of Sci
  • Wang JL; Shenzhen Key Laboratory of Sustainable Biomimetic Materials, Guangdong Provincial Key Laboratory of Sustainable Biomimetic Materials and Green Energy, Department of Materials Science and Engineering, Institute of Innovative Materials, Guangming Advanced Research Institute, Southern University of Sci
  • Yu SH; Shenzhen Key Laboratory of Sustainable Biomimetic Materials, Guangdong Provincial Key Laboratory of Sustainable Biomimetic Materials and Green Energy, Department of Materials Science and Engineering, Institute of Innovative Materials, Guangming Advanced Research Institute, Southern University of Sci
Adv Mater ; : e2408192, 2024 Aug 19.
Article em En | MEDLINE | ID: mdl-39155803
ABSTRACT
Mechanochromic light control technology that can dynamically regulate solar irradiation is recognized as one of the leading candidates for energy-saving windows. However, the lack of spectrally selective modulation ability still hinders its application for different scenarios or individual needs. Here, inspired by the generation of structure color and color change of living organisms, a simple layer-by-layer assembly approach toward large-area fabricating mechanically responsive film for visible and near-infrared multiwavelength spectral modulation smart windows is reported here. The assembled SiO2 nanoparticles and W18O49 nanowires enable the film with an optical modulation rate of up to 42.4% at the wavelength of 550 nm and 18.4% for the near-infrared region, separately, and the typical composite film under 50% stretching shows ≈41.6% modulation rate at the wavelength of 550 nm with NIR modulation rate less than 2.7%. More importantly, the introduction of the multilayer assembly structure not only optimizes the film's optical modulation but also enables the film with high stability during 100 000 stretching cycles. A cooling effect of 21.3 and 6.9 °C for the blackbody and air inside a model house in the real environmental application is achieved. This approach provides theoretical and technical support for the new mechanochromic energy-saving windows.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Adv Mater Assunto da revista: BIOFISICA / QUIMICA Ano de publicação: 2024 Tipo de documento: Article País de publicação: Alemanha

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Adv Mater Assunto da revista: BIOFISICA / QUIMICA Ano de publicação: 2024 Tipo de documento: Article País de publicação: Alemanha