Your browser doesn't support javascript.
loading
Impact of excessive sucrose intake on mouse behavior across different developmental stages.
Kim, Ye-Jin; Jung, Jae-Won; Lee, Kyung-A; Lee, Young-A.
Afiliação
  • Kim YJ; Department of Food Science and Nutrition, Daegu Catholic University, Gyeongsan.
  • Jung JW; Pathology Team, Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation (KMEDIhub), Daegu, Republic of Korea.
  • Lee KA; Department of Food Science and Nutrition, Daegu Catholic University, Gyeongsan.
  • Lee YA; Department of Food Science and Nutrition, Daegu Catholic University, Gyeongsan.
Neuroreport ; 35(14): 936-946, 2024 Oct 02.
Article em En | MEDLINE | ID: mdl-39171853
ABSTRACT
This study aimed to elucidate the effects of sucrose (SUC) consumption on neurodevelopmental processes through behavioral changes in rodents and determine whether these effects could be because of sweet taste, energy supply, or both. Mice were divided into five groups based on the time of SUC or sucralose (SUR, a noncaloric sweetener) administration for 6 days from gestation day (GTD) 7, to birth from GTD13 and for 15 days from postnatal day (PND) 21, PND38, and PND56. SUC and SUR administration did not impact body weight. However, food intake in the PND56 group and water intake in the GTD13 and PND56 groups were increased by SUC and SUR administration. Amphetamine (0.5, 1, 2, and 3 mg/kg), a dopamine reuptake inhibitor, administration to assess alterations in the dopaminergic system induced increases in distance traveled after SUC administration in the GTD13 and PND21 groups compared with that in the control (vehicle administration) group. In contrast, the SUR group showed a decrease in the distance traveled in the PND56 group. Although there were no differences in locomotor activity and foraging behavior, SUC preference increased in the SUC group regarding the GTD13 and PND38 groups. The correlations between SUC preference and foraging behavior and between SUC preference and amphetamine response varied in both groups according to the developmental stage. Excessive SUC consumption might affect neural function at different developmental stages, as it could affect brain function through complex mechanisms involving sweet taste and energy supply and influence the dopaminergic system.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Sacarose Limite: Animals / Pregnancy Idioma: En Revista: Neuroreport Assunto da revista: NEUROLOGIA Ano de publicação: 2024 Tipo de documento: Article País de publicação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Sacarose Limite: Animals / Pregnancy Idioma: En Revista: Neuroreport Assunto da revista: NEUROLOGIA Ano de publicação: 2024 Tipo de documento: Article País de publicação: Reino Unido