Energy and spectroscopic parameters of neutral and cations isomers of the CnH2 (n = 2-6) families using high-level ab-initio approaches.
J Comput Chem
; 2024 Aug 23.
Article
em En
| MEDLINE
| ID: mdl-39177429
ABSTRACT
Cationic species, previously detected from ion-induced desorption of solid methane by plasma desorption mass spectrometry (PDMS), and neutral species, are investigated using high-level ab-initio approaches. From a set of 25 cationic and 26 neutral structures belonging to CnH2 (n = 2-6) families, it was obtained the energy, rotational constants, harmonic vibrational frequency, charge distribution and excitation energies. The ZPVE-corrected energies, at CCSD(T)-F12; CCSD(T)-F12/RI/(cc-pVTZ-F12, cc-pVTZ-F12-CABS, cc-pVQZ/C) (n = 2-5) and CCSD(T)/cc-pVTZ (n = 6) levels, reveal that the topology of the most stable isomer vary with n and the charge. Out of 674 harmonic frequencies, those with maximum intensity are generally in the 3000-3500 cm-1 range. Analysis of 169 vertical transition energies calculated with the EOM-CCSD approach, suggest three C6H2 species as potential carriers of the diffuse interstellar bands (DIB). Systematic comparison of properties between neutral and cationic species can assist in the structural description of complex matrices.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Revista:
J Comput Chem
Assunto da revista:
QUIMICA
Ano de publicação:
2024
Tipo de documento:
Article
País de afiliação:
Brasil
País de publicação:
Estados Unidos