Your browser doesn't support javascript.
loading
Activation of peroxymonosulfate by sustainable biomass-based carbon nanotubes for controlling the spread of plant viruses in water environments.
Tang, Jian; Wang, Yujie; Ma, Jun; Chen, Yujie; Chen, Ming.
Afiliação
  • Tang J; College of Resources and Environment, Yangtze University, Wuhan 430100, China; Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Chongqing School, University of Chinese Academy of Sciences,
  • Wang Y; Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China.
  • Ma J; Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China.
  • Chen Y; Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; School of Geography and Tourism, Chongqing Normal University, Chongqing 400714, China.
  • Chen M; Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China. Electronic address: chenming@cigit.ac.cn.
J Environ Sci (China) ; 149: 99-112, 2025 Mar.
Article em En | MEDLINE | ID: mdl-39181682
ABSTRACT
With the increasing demand for water in hydroponic systems and agricultural irrigation, viral diseases have seriously affected the yield and quality of crops. By removing plant viruses in water environments, virus transmission can be prevented and agricultural production and ecosystems can be protected. But so far, there have been few reports on the removal of plant viruses in water environments. Herein, in this study, easily recyclable biomass-based carbon nanotubes catalysts were synthesized with varying metal activities to activate peroxymonosulfate (PMS). Among them, the magnetic 0.125Fe@NCNTs-1/PMS system showed the best overall removal performance against pepper mild mottle virus, with a 5.9 log10 removal within 1 min. Notably, the key reactive species in the 0.125Fe@NCNTs-1/PMS system is 1O2, which can maintain good removal effect in real water matrices (river water and tap water). Through RNA fragment analyses and label free analysis, it was found that this system could effectively cleave virus particles, destroy viral proteins and expose their genome. The capsid protein of pepper mild mottle virus was effectively decomposed where serine may be the main attacking sites by 1O2. Long viral RNA fragments (3349 and 1642 nt) were cut into smaller fragments (∼160 nt) and caused their degradation. In summary, this study contributes to controlling the spread of plant viruses in real water environment, which will potentially help protect agricultural production and food safety, and improve the health and sustainability of ecosystems.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Biomassa / Nanotubos de Carbono Idioma: En Revista: J Environ Sci (China) / Journal of Environmental Sciences (China) / Journal of environmental sciences (Online) Assunto da revista: SAUDE AMBIENTAL Ano de publicação: 2025 Tipo de documento: Article País de publicação: Holanda

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Biomassa / Nanotubos de Carbono Idioma: En Revista: J Environ Sci (China) / Journal of Environmental Sciences (China) / Journal of environmental sciences (Online) Assunto da revista: SAUDE AMBIENTAL Ano de publicação: 2025 Tipo de documento: Article País de publicação: Holanda