Your browser doesn't support javascript.
loading
Innovative Alignment-Based Method for Antiviral Peptide Prediction.
de Llano García, Daniela; Marrero-Ponce, Yovani; Agüero-Chapin, Guillermin; Ferri, Francesc J; Antunes, Agostinho; Martinez-Rios, Felix; Rodríguez, Hortensia.
Afiliação
  • de Llano García D; School of Chemical Sciences and Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, Urcuquí 100119, Imbabura, Ecuador.
  • Marrero-Ponce Y; Universidad San Francisco de Quito (USFQ), Grupo de Medicina Molecular y Traslacional (MeM&T), Colegio de Ciencias de la Salud (COCSA), Escuela de Medicina, Edificio de Especialidades Médicas, Instituto de Simulación Computacional (ISC-USFQ), Diego de Robles y vía Interoceánica, Quito 170157, Pi
  • Agüero-Chapin G; Facultad de Ingeniería, Universidad Panamericana, Augusto Rodin 498, Benito Juárez 03920, Ciudad de México, Mexico.
  • Ferri FJ; Computer Science Department, Universitat de València, 46100 Valencia, Burjassot, Spain.
  • Antunes A; CIIMAR-Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal.
  • Martinez-Rios F; Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal.
  • Rodríguez H; Computer Science Department, Universitat de València, 46100 Valencia, Burjassot, Spain.
Antibiotics (Basel) ; 13(8)2024 Aug 14.
Article em En | MEDLINE | ID: mdl-39200068
ABSTRACT
Antiviral peptides (AVPs) represent a promising strategy for addressing the global challenges of viral infections and their growing resistances to traditional drugs. Lab-based AVP discovery methods are resource-intensive, highlighting the need for efficient computational alternatives. In this study, we developed five non-trained but supervised multi-query similarity search models (MQSSMs) integrated into the StarPep toolbox. Rigorous testing and validation across diverse AVP datasets confirmed the models' robustness and reliability. The top-performing model, M13+, demonstrated impressive results, with an accuracy of 0.969 and a Matthew's correlation coefficient of 0.71. To assess their competitiveness, the top five models were benchmarked against 14 publicly available machine-learning and deep-learning AVP predictors. The MQSSMs outperformed these predictors, highlighting their efficiency in terms of resource demand and public accessibility. Another significant achievement of this study is the creation of the most comprehensive dataset of antiviral sequences to date. In general, these results suggest that MQSSMs are promissory tools to develop good alignment-based models that can be successfully applied in the screening of large datasets for new AVP discovery.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Antibiotics (Basel) Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Equador País de publicação: Suíça

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Antibiotics (Basel) Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Equador País de publicação: Suíça