Your browser doesn't support javascript.
loading
Analysis of multi-wave solitary solutions of (2+1)-dimensional coupled system of Boiti-Leon-Pempinelli.
Ghazanfar, Sidra; Ahmed, Nauman; Iqbal, Muhammad Sajid; Ali, Syed Mansoor; Akgül, Ali; Muhammad, Shah; Ali, Mubasher; Hassani, Murad Khan.
Afiliação
  • Ghazanfar S; Department of Mathematics and Statistics, The University of Lahore, Lahore, Pakistan.
  • Ahmed N; Department of Mathematics and Statistics, The University of Lahore, Lahore, Pakistan.
  • Iqbal MS; Department of Computer Science and Mathematics, Lebanese American University, Beirut, Lebanon.
  • Ali SM; Department of Academic Affairs, School of Leadership and Business, Oryx Universal College With Liverpool John Moores University (UK), 12253, Doha, Qatar.
  • Akgül A; Department of Humanities and Basic Science, MCS, NUST, Islamabad, Pakistan.
  • Muhammad S; Department of Physics and Astronomy, College of Science,, King Saud University, P.O. BOX 2455, 11451, Riyadh, Saudi Arabia.
  • Ali M; Department of Mathematics, Art and Science Faculty, Siirt University, 56100, Siirt, Turkey.
  • Hassani MK; Department of Computer Engineering, Biruni University, 34010, Topkapi Istanbul, Turkey.
Sci Rep ; 14(1): 20234, 2024 Aug 30.
Article em En | MEDLINE | ID: mdl-39215034
ABSTRACT
This work examines the (2+1)-dimensional Boiti-Leon-Pempinelli model, which finds its use in hydrodynamics. This model explains how water waves vary over time in hydrodynamics. We provide new explicit solutions to the generalized (2+1)-dimensional Boiti-Leon-Pempinelli equation by applying the Sardar sub-equation technique. This method is shown to be a reliable and practical tool for solving nonlinear wave equations. Furthermore, different types of solitary wave solutions are constructed w-shaped, breather waved, chirped, dark, bright, kink, unique, periodic, and more. The results obtained with the variable coefficient Boiti-Leon-Pempinelli equation are stable and different from previous methods. As compared to their constant-coefficient counterparts, the variable-coefficient models are more general here. In the current work, the problem is solved using the Sardar Sub-problem Technique to produce distinct soliton solutions with parameters. Plotting these graphs of the solutions will help you better comprehend the model. The outcomes demonstrate how well the method works to solve nonlinear partial differential equations, which are common in mathematical physics.With the help of this method, we may examine a variety of solutions from significant physical perspectives.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Sci Rep Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Paquistão País de publicação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Sci Rep Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Paquistão País de publicação: Reino Unido