Your browser doesn't support javascript.
loading
Plasmonic-Promoted Interatomic Hot Carriers Regulation Enhanced Electrocatalytic Nitrogen Reduction Reaction.
Liang, Wenkai; Xie, Miao; Li, Dong; Qin, Wei; Dai, Chang; Wang, Yawen; Zhang, Hao; Zhao, Bo; Jin, Guangyao; Sun, Yinghui; Jiang, Lin.
Afiliação
  • Liang W; Soochow University, Institute of Functional Nano & Soft Materials, 215123, Suzhou, CHINA.
  • Xie M; Soochow University, Institute of Functional Nano & Soft Materials, 215123, Suzhou, CHINA.
  • Li D; Soochow University, Institute of Functional Nano & Soft Materials, 215123, Suzhou, CHINA.
  • Qin W; Soochow University, Institute of Functional Nano & Soft Materials, 215123, Suzhou, CHINA.
  • Dai C; Soochow University, College of Chemistry, CHINA.
  • Wang Y; Soochow University, Institute of Functional Nano & Soft Materials, 215123, Suzhou, CHINA.
  • Zhang H; Soochow University, Institute of Functional Nano & Soft Materials, 215123, Suzhou, CHINA.
  • Zhao B; Soochow University, Institute of Functional Nano & Soft Materials, 215123, Suzhou, CHINA.
  • Jin G; Soochow University, Institute of Functional Nano & Soft Materials, 215123, Suzhou, CHINA.
  • Sun Y; Soochow University, College of Chemistry, Chemical Engineering and Materials Science, 215123, Suzhou, CHINA.
  • Jiang L; Soochow University, Institute of Functional Nano and Soft Materials (FUNSOM), 199 Ren-Ai Road, Suzhou Industrial Park, 215123, Suzhou, CHINA.
Angew Chem Int Ed Engl ; : e202409484, 2024 Sep 01.
Article em En | MEDLINE | ID: mdl-39218790
ABSTRACT
Utilizing hot carriers for efficient plasmonic-mediated chemical reactions (PMCRs) to convert solar energy into secondary energy is one of the most feasible solutions to the global environmental and energy crisis. Finding a plasmonic heterogeneous nanostructure with a more efficient and reasonable hot carrier transport path without affecting the intrinsic plasmonic properties is still a major challenge that urgently needs to be solved in this field. Herein, the mechanism by which plasmonic-promoted interatomic hot electron redistribution on the surface of Au3Cu alloy nanoparticles promotes the electrocatalytic nitrogen reduction reaction (ENRR) is successfully clarified. The localized surface plasmon resonance (LSPR) effect can boost the transfer of plasmonic hot electrons from Au atoms to Cu atoms, trigger the interatomic electron regulation of Au3Cu alloy nanoparticles, enhance the desorption of ammonia molecules, and increase the ammonia yield by approximately 93.9%. This work provides an important reference for rationally designing and utilizing the LSPR effect to efficiently regulate the distribution and mechanism of plasmonic hot carriers on the surface of heterogeneous alloy nanostructures.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Angew Chem Int Ed Engl / Angew. Chem. (Int. ed., Internet) / Angewandte Chemie (International ed. Internet) Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China País de publicação: Alemanha

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Angew Chem Int Ed Engl / Angew. Chem. (Int. ed., Internet) / Angewandte Chemie (International ed. Internet) Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China País de publicação: Alemanha