Your browser doesn't support javascript.
loading
Epid data explorer: A visualization tool for exploring and comparing spatio-temporal epidemiological data.
Viau, Laetitia; Azé, Jérôme; Chen, Fati; Pompidor, Pierre; Poncelet, Pascal; Raveneau, Vincent; Rodriguez, Nancy; Sallaberry, Arnaud.
Afiliação
  • Viau L; LIRMM, Université de Montpellier, CNRS, France.
  • Azé J; LIRMM, Université de Montpellier, CNRS, France.
  • Chen F; LIRMM, Université de Montpellier, CNRS, France.
  • Pompidor P; LIRMM, Université de Montpellier, CNRS, France.
  • Poncelet P; LIRMM, Université de Montpellier, CNRS, France.
  • Raveneau V; LIRMM, Université de Montpellier, CNRS, France.
  • Rodriguez N; LIRMM, Université de Montpellier, CNRS, France.
  • Sallaberry A; LIRMM, Université de Montpellier, CNRS, France.
Health Informatics J ; 30(3): 14604582241279720, 2024.
Article em En | MEDLINE | ID: mdl-39224960
ABSTRACT
The analysis of large sets of spatio-temporal data is a fundamental challenge in epidemiological research. As the quantity and the complexity of such kind of data increases, automatic analysis approaches, such as statistics, data mining, machine learning, etc., can be used to extract useful information. While these approaches have proven effective, they require a priori knowledge of the information being sought, and some interesting insights into the data may be missed. To bridge this gap, information visualization offers a set of techniques for not only presenting known information, but also exploring data without having a hypothesis formulated beforehand. In this paper, we introduce Epid Data Explorer (EDE), a visualization tool that enables exploration of spatio-temporal epidemiological data. EDE allows easy comparisons of indicators and trends across different geographical areas and times. It facilitates this exploration through ready-to-use pre-loaded datasets as well as user-chosen datasets. The tool also provides a secure architecture for easily importing new datasets while ensuring confidentiality. In two use cases using data associated with the COVID-19 epidemic, we demonstrate the substantial impact of implemented lockdown measures on mobility and how EDE allows assessing correlations between the spread of COVID-19 and weather conditions.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Análise Espaço-Temporal / COVID-19 Limite: Humans Idioma: En Revista: Health Informatics J Ano de publicação: 2024 Tipo de documento: Article País de afiliação: França País de publicação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Análise Espaço-Temporal / COVID-19 Limite: Humans Idioma: En Revista: Health Informatics J Ano de publicação: 2024 Tipo de documento: Article País de afiliação: França País de publicação: Reino Unido