Your browser doesn't support javascript.
loading
Azobenzene-based liposomes with nanomechanical action for cytosolic chemotherapeutic drug delivery.
Zhao, Cui-Cui; Peng, Shiyu; Wang, Jialiang Rachel; Hou, Xiaoxue; Zhao, Yu; Huang, Fan.
Afiliação
  • Zhao CC; Department of VIP Ward, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy (Tianjin), Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical U
  • Peng S; State Key Laboratory of Advanced Medicals and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
  • Wang JR; Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, United States.
  • Hou X; State Key Laboratory of Advanced Medicals and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
  • Zhao Y; Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, United States. Electronic address: yz3243@cornell.edu.
  • Huang F; State Key Laboratory of Advanced Medicals and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China. El
Colloids Surf B Biointerfaces ; 245: 114198, 2024 Aug 31.
Article em En | MEDLINE | ID: mdl-39236362
ABSTRACT
The stimuli-responsive nano-carriers are at the forefront of research in nanotechnology and materials science. These advanced systems are designed to alter their physicochemical properties upon exposure to specific stimuli, enabling controllable and targeted delivery of therapeutic agents. Nevertheless, limited endosomal escape reduces the drug bioavailability in clinical use. We herein report azobenzene (Azo)-based liposomes, prepared by co-assembling the photoisomerizable cationic Azo lipids and helper lipids, which achieve controllable doxorubicin (Dox) release and enhanced cytosolic transport upon light irradiation. Azo lipids undergo reversible isomerization between cis-isomers and trans-isomer when received UV and visible (Vis) light irradiation, causing liposomal membrane permeability changes for controlled drug release. Moreover, the nanomechanical action created by the isomerization of Azo lipids promotes the endosomal escape of the liposomes. DSPC-Azo liposomes, with minimal Dox leakage, showed significant tumor cell killing upon irradiation. For in vivo study, we co-encapsulated the upconverting nanoparticles (UCNPs), which can convert the near-infrared (NIR) light into UV/Vis emissions, facilitating Azo units activation. UCNP/Dox-loaded DSPC-Azo liposomes inhibited tumor growth under NIR irradiation in a 4T1 tumor-bearing mouse model.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Colloids Surf B Biointerfaces Assunto da revista: QUIMICA Ano de publicação: 2024 Tipo de documento: Article País de publicação: Holanda

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Colloids Surf B Biointerfaces Assunto da revista: QUIMICA Ano de publicação: 2024 Tipo de documento: Article País de publicação: Holanda