Your browser doesn't support javascript.
loading
High fluoride aggravates cadmium-mediated nephrotoxicity of renal tubular epithelial cells through ROS-PINK1/Parkin pathway.
Li, Dashuan; Yang, Chaolian; Sun, Lu; Zhao, Zhenqin; Liu, Jiaqi; Zhang, Cheng; Sun, Dali; Zhang, Qinghai.
Afiliação
  • Li D; School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, No.6 Ankang Road, Guian New Area, Guizhou 561113, China.
  • Yang C; School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, No.6 Ankang Road, Guian New Area, Guizhou 561113, China.
  • Sun L; School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, No.6 Ankang Road, Guian New Area, Guizhou 561113, China.
  • Zhao Z; School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, No.6 Ankang Road, Guian New Area, Guizhou 561113, China.
  • Liu J; School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, No.6 Ankang Road, Guian New Area, Guizhou 561113, China.
  • Zhang C; School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, No.6 Ankang Road, Guian New Area, Guizhou 561113, China.
  • Sun D; School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, No.6 Ankang Road, Guian New Area, Guizhou 561113, China.
  • Zhang Q; School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, No.6 Ankang Road, Guian New Area, Guizhou 561113, China. Electronic address: zhqh@gmc.edu.cn.
Sci Total Environ ; 953: 175927, 2024 Nov 25.
Article em En | MEDLINE | ID: mdl-39236818
ABSTRACT
Fluoride (F) and cadmium (Cd) as well known environmental pollutants can cause nephrotoxicity to damage human health, while the joint toxicity of F and Cd to the renal tubular epithelial cells remains still elusive. The interactive influence between F and Cd in oxidative stress, apoptosis, and mitochondrial autophagy of renal tubular epithelial cells was explored. Cells were submitted to varying concentrations with of NaF (1, 5, 10, and 15 µg/mL) combined with CdCl2·2.5H2O (1 µg/mL) for 12 h. Following this, the combined cytotoxicity was assessed. Our results show that different doses of F had varying effects on Cd-mediated nephrotoxicity, with a synergistic effect observed in the high F (15 µg/mL) co-treated with Cd. In response to the Cd induction, the high F treatment resulted in the formation of multiple autophagosomes and notably increased the levels of LDH, ROS, and MMP. It also elevated the MDA contents while decreasing the activities of SOD, GSH-Px, and CAT. Additionally, it yielded a higher Bax/Bcl-2 ratio, which further promotes the apoptotic process. The treatment also disturbed energy metabolism, resulting in a reduction of both ATP and ADP. Furthermore, autophagy-related genes and proteins, including PINK1, Parkin, LC3A, LC3B, and SQSTM1, were significantly improved. In brief, high F of 15 µg/mL aggravated Cd-mediated nephrotoxicity of renal tubular epithelial cells via the ROS-PINK1/Parkin pathway.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteínas Quinases / Cádmio / Espécies Reativas de Oxigênio / Ubiquitina-Proteína Ligases / Células Epiteliais / Túbulos Renais Idioma: En Revista: Sci Total Environ Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China País de publicação: Holanda

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteínas Quinases / Cádmio / Espécies Reativas de Oxigênio / Ubiquitina-Proteína Ligases / Células Epiteliais / Túbulos Renais Idioma: En Revista: Sci Total Environ Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China País de publicação: Holanda