Your browser doesn't support javascript.
loading
Evaluation of an Inverse Method for Quantifying Spatially Variable Mechanics.
Pearce, Daniel P; Witzenburg, Colleen M.
Afiliação
  • Pearce DP; Department of Biomedical Engineering, University of Wisconsin-Madison, 1550 Engineering Drive, ECB 2139, Madison, WI 53706.
  • Witzenburg CM; Department of Biomedical Engineering, University of Wisconsin-Madison, 1550 Engineering Drive, ECB 2139, Madison, WI 53706.
J Biomech Eng ; 146(12)2024 Dec 01.
Article em En | MEDLINE | ID: mdl-39240274
ABSTRACT
Soft biological tissues often function as highly deformable membranes in vivo and exhibit impressive mechanical behavior effectively characterized by planar biaxial testing. The Generalized Anisotropic Inverse Mechanics (GAIM) method links full-field deformations and boundary forces from mechanical testing to quantify material properties of soft, anisotropic, heterogeneous tissues. In this study, we introduced an orthotropic constraint to GAIM to improve the quality and physical significance of its mechanical characterizations. We evaluated the updated GAIM method using simulated and experimental biaxial testing datasets obtained from soft tissue analogs (PDMS and TissueMend) with well-defined mechanical properties. GAIM produced stiffnesses (first Kelvin moduli, K1) that agreed well with previously published Young's moduli of PDMS samples. It also matched the stiffness moduli determined via uniaxial testing for TissueMend, a collagen-rich patch intended for tendon repair. We then conducted the first biaxial testing of TissueMend and confirmed that the sample was mechanically anisotropic via a relative anisotropy metric produced by GAIM. Next, we demonstrated the benefits of full-field laser micrometry in distinguishing between spatial variations in thickness and stiffness. Finally, we conducted an analysis to verify that results were independent of partitioning scheme. The success of the newly implemented constraints on GAIM suggests notable potential for applying this tool to soft tissues, particularly following the onset of pathologies that induce mechanical and structural heterogeneities.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Teste de Materiais / Fenômenos Mecânicos Idioma: En Revista: J Biomech Eng Ano de publicação: 2024 Tipo de documento: Article País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Teste de Materiais / Fenômenos Mecânicos Idioma: En Revista: J Biomech Eng Ano de publicação: 2024 Tipo de documento: Article País de publicação: Estados Unidos