Your browser doesn't support javascript.
loading
Stretch-induced hepatic endothelial mechanocrine promotes hepatocyte proliferation.
Wu, Yi; Li, Linda; Li, Wang; Li, Ning; Zhang, Xiaoyu; Zheng, Lu; Zhong, Shaoyu; Lü, Shouqin; Shu, Xinyu; Zhou, Jin; Ai, Ding; Gao, Ming; Liu, Sijin; Lü, Dongyuan; Long, Mian.
Afiliação
  • Wu Y; Center for Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China.
  • Li L; University of Chinese Academy of Sciences, Beijing 100049, China.
  • Li W; Center for Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China.
  • Li N; Center for Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China.
  • Zhang X; University of Chinese Academy of Sciences, Beijing 100049, China.
  • Zheng L; Center for Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China.
  • Zhong S; University of Chinese Academy of Sciences, Beijing 100049, China.
  • Lü S; Center for Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China.
  • Shu X; University of Chinese Academy of Sciences, Beijing 100049, China.
  • Zhou J; Center for Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China.
  • Ai D; University of Chinese Academy of Sciences, Beijing 100049, China.
  • Gao M; Center for Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China.
  • Liu S; Center for Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China.
  • Lü D; University of Chinese Academy of Sciences, Beijing 100049, China.
  • Long M; Center for Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China.
Hepatology ; 2024 Sep 06.
Article em En | MEDLINE | ID: mdl-39250438
ABSTRACT
BACKGROUND

AIMS:

Partial hepatectomy (PHx)-induced liver regeneration causes the increase in relative blood flow rate within the liver, which dilates hepatic sinusoids and applies mechanical stretch on liver sinusoidal endothelial cells (LSECs). Heparin-binding EGF-like growth factor (HB-EGF) is a crucial growth factor during liver regeneration. We aimed to investigate whether this sinusoidal dilation-induced stretch promotes HB-EGF secretion in LSECs and what the related molecular mechanism is. APPROACH

RESULTS:

In vivo PHx, ex vivo liver perfusion and in vitro LSEC mechanical stretch were applied to detect HB-EGF expression in LSECs and hepatocyte proliferation. Knockdown or inhibition of mechanosensitive proteins were used to unravel the molecular mechanism in response to stretch. This stretch triggers amplitude- and duration-dependent HB-EGF up-regulation in LSECs, which is mediated by Yes-associated protein (YAP) nuclear translocation and binding to TEAD. This YAP translocation is achieved in two ways On one hand, F-actin polymerization-mediated expansion of nuclear pores promotes YAP entry into nucleus passively. On the other hand, F-actin polymerization up-regulates the expression of BAG family molecular chaperone regulator 3 (BAG-3), which binds with YAP to enter nucleus cooperatively. In this process, ß1-integrin serves as a target mechanosensory in stretch-induced signaling pathways. This HB-EGF secretion-promoted liver regeneration after 2/3 PHx is attenuated in endothelial cell-specific Yap1-deficient mice.

CONCLUSIONS:

Our findings indicate that mechanical stretch-induced HB-EGF up-regulation in LSECs via YAP translocation can promote the hepatocyte proliferation during liver regeneration through a mechanocrine manner, which deepens the understanding of the mechanical-biological coupling in liver regeneration.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Hepatology Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Hepatology Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China País de publicação: Estados Unidos