Your browser doesn't support javascript.
loading
Smartphone region-wise image indoor localization using deep learning for indoor tourist attraction.
Hirokawa Higa, Gabriel Toshio; Stuqui Monzani, Rodrigo; da Silva Cecatto, Jorge Fernando; Balestieri Mariano de Souza, Maria Fernanda; de Moraes Weber, Vanessa Aparecida; Pistori, Hemerson; Matsubara, Edson Takashi.
Afiliação
  • Hirokawa Higa GT; Dom Bosco Catholic University, Campo Grande, MS, Brazil.
  • Stuqui Monzani R; Federal University of Mato Grosso do Sul, Campo Grande, MS, Brazil.
  • da Silva Cecatto JF; Federal University of Mato Grosso do Sul, Campo Grande, MS, Brazil.
  • Balestieri Mariano de Souza MF; Pantanal Biopark, Campo Grande, MS, Brazil.
  • de Moraes Weber VA; State University of Mato Grosso do Sul, Campo Grande, MS, Brazil.
  • Pistori H; Kerow Precision Solutions, Campo Grande, MS, Brazil.
  • Matsubara ET; Dom Bosco Catholic University, Campo Grande, MS, Brazil.
PLoS One ; 19(9): e0307569, 2024.
Article em En | MEDLINE | ID: mdl-39250439
ABSTRACT
Smart indoor tourist attractions, such as smart museums and aquariums, require a significant investment in indoor localization devices. The use of Global Positioning Systems on smartphones is unsuitable for scenarios where dense materials such as concrete and metal blocks weaken GPS signals, which is most often the case in indoor tourist attractions. With the help of deep learning, indoor localization can be done region by region using smartphone images. This approach requires no investment in infrastructure and reduces the cost and time needed to turn museums and aquariums into smart museums or smart aquariums. In this paper, we propose using deep learning algorithms to classify locations based on smartphone camera images for indoor tourist attractions. We evaluate our proposal in a real-world scenario in Brazil. We extensively collect images from ten different smartphones to classify biome-themed fish tanks in the Pantanal Biopark, creating a new dataset of 3654 images. We tested seven state-of-the-art neural networks, three of them based on transformers. On average, we achieved a precision of about 90% and a recall and f-score of about 89%. The results show that the proposal is suitable for most indoor tourist attractions.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Smartphone / Aprendizado Profundo Limite: Humans País/Região como assunto: America do sul / Brasil Idioma: En Revista: PLoS One Assunto da revista: CIENCIA / MEDICINA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Brasil País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Smartphone / Aprendizado Profundo Limite: Humans País/Região como assunto: America do sul / Brasil Idioma: En Revista: PLoS One Assunto da revista: CIENCIA / MEDICINA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Brasil País de publicação: Estados Unidos