Your browser doesn't support javascript.
loading
Analysis of environmental variables and deforestation in the amazon using logistical regression models.
da Silva, Helder J F; Gonçalves, Weber A; Bezerra, Bergson G; Santos E Silva, Cláudio M; de Oliveira, Cristiano P; Júnior, Jório B Cabral; Rodrigues, Daniele T; Silva, Fabrício D S.
Afiliação
  • da Silva HJF; Brazilian Meteorology Agency, São Paulo, SP, Brazil. helderlagoia@gmail.com.
  • Gonçalves WA; Department of Atmospheric and Climate Sciences, Federal University of Rio Grande Do Norte, Natal, RN, Brazil.
  • Bezerra BG; Department of Atmospheric and Climate Sciences, Federal University of Rio Grande Do Norte, Natal, RN, Brazil.
  • Santos E Silva CM; Department of Atmospheric and Climate Sciences, Federal University of Rio Grande Do Norte, Natal, RN, Brazil.
  • de Oliveira CP; Department of Atmospheric and Climate Sciences, Federal University of Rio Grande Do Norte, Natal, RN, Brazil.
  • Júnior JBC; Graduate Program in Geography (PPGG), Institute of Geography, Development and Environment (IGDEMA), Federal University of Alagoas (UFAL), Maceió, AL, Brazil.
  • Rodrigues DT; Department of Statistic, Federal University of Piauí, Teresina, PI, Brazil.
  • Silva FDS; Postgraduate Program in Meteorology (PPGM), Institute of Atmospheric Sciences (ICAT), Federal University of Alagoas (UFAL), Maceió, AL, Brazil.
Environ Monit Assess ; 196(10): 911, 2024 Sep 09.
Article em En | MEDLINE | ID: mdl-39251519
ABSTRACT
In this study, we applied a multivariate logistic regression model to identify deforested areas and evaluate the current effects on environmental variables in the Brazilian state of Rondônia, located in the southwestern Amazon region using data from the MODIS/Terra sensor. The variables albedo, temperature, evapotranspiration, vegetation index, and gross primary productivity were analyzed from 2000 to 2022, with surface type data from the PRODES project as the dependent variable. The accuracy of the models was evaluated by the parameters area under the curve (AUC), pseudo R2, and Akaike information criterion, in addition to statistical tests. The results indicated that deforested areas had higher albedo (25%) and higher surface temperatures (3.2 °C) compared to forested areas. There was a significant reduction of the EVI (16%), indicating water stress, and a decrease in GPP (18%) and ETr (23%) due to the loss of plant biomass. The most precise model (91.6%) included only surface temperature and albedo, providing important information about the environmental impacts of deforestation in humid tropical regions.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Florestas / Monitoramento Ambiental / Conservação dos Recursos Naturais País/Região como assunto: America do sul / Brasil Idioma: En Revista: Environ Monit Assess Assunto da revista: SAUDE AMBIENTAL Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Brasil País de publicação: Holanda

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Florestas / Monitoramento Ambiental / Conservação dos Recursos Naturais País/Região como assunto: America do sul / Brasil Idioma: En Revista: Environ Monit Assess Assunto da revista: SAUDE AMBIENTAL Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Brasil País de publicação: Holanda