Your browser doesn't support javascript.
loading
Reciprocal regulation of m 6 A modification and miRNA production machineries via phase separation-dependent and -independent mechanisms.
bioRxiv ; 2024 Sep 01.
Article em En | MEDLINE | ID: mdl-39257768
ABSTRACT
Methyltransferase complex (MTC) deposits N 6-adenosine (m 6 A) onto RNA, whereas microprocessor produces miRNA. Whether and how these two distinct complexes cross-regulate each other has been poorly studied. Here we report that the MTC subunit B (MTB) tends to form insoluble condensates with poor activity, with its level monitored by 20S proteasome. Conversely, the microprocessor component SERRATE (SE) forms liquid-like condensates, which in turn promotes solubility and stability of MTB, leading to increased MTC activity. Consistently, the hypomorphic lines expressing SE variants, defective in MTC interaction or liquid-like phase behavior, exhibit reduced m 6 A level. Reciprocally, MTC can recruit microprocessor to MIRNA loci, prompting co-transcriptional cleavage of primary miRNA (pri-miRNAs) substrates. Additionally, pri-miRNAs carrying m 6 A modifications at their single-stranded basal regions are enriched by m 6 A readers, which retain microprocessor in the nucleoplasm for continuing processing. This reveals an unappreciated mechanism of phase separation in RNA modification and processing through MTC and microprocessor coordination.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: BioRxiv Ano de publicação: 2024 Tipo de documento: Article País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: BioRxiv Ano de publicação: 2024 Tipo de documento: Article País de publicação: Estados Unidos