Your browser doesn't support javascript.
loading
Comprehensive analysis of the effect of structural parameters on erosion wear, structural stress, and deformation of high-pressure double-elbow in shale-gas fracturing.
Yang, Siqi; Fan, Jianchun; Zhao, Nan; Yang, Jiakun; Xu, Changfeng; Lu, Junan; Zou, Guanggui; Wang, Jianjun; Dai, Siwei; Zhou, Binchao.
Afiliação
  • Yang S; State Key Laboratory of Oil and Gas Equipment, CNPC Tubular Goods Research Institute, Xi'an, 710076, China.
  • Fan J; Key Laboratory of Oil and Gas Safety and Emergency Technology, China University of Petroleum, Beijing, 102249, China.
  • Zhao N; Gas Storage Co., Ltd., PetroChina Xinjiang Oilfield Company, Hutubi, 831200, China.
  • Yang J; PipeChina ZhongYuan Gas Storage Limited Liability Company, Puyang, 457001, China.
  • Xu C; Gas Storage Co., Ltd., PetroChina Xinjiang Oilfield Company, Hutubi, 831200, China.
  • Lu J; PetroChina Tarim Oilfield Company, Korla, 841000, China.
  • Zou G; PetroChina Tarim Oilfield Company, Korla, 841000, China.
  • Wang J; State Key Laboratory of Oil and Gas Equipment, CNPC Tubular Goods Research Institute, Xi'an, 710076, China.
  • Dai S; Key Laboratory of Oil and Gas Safety and Emergency Technology, China University of Petroleum, Beijing, 102249, China.
  • Zhou B; Mechanical Engineering College, Xi'an Shiyou University, Xi'an, 710065, China.
Heliyon ; 10(16): e36341, 2024 Aug 30.
Article em En | MEDLINE | ID: mdl-39262948
ABSTRACT
In field hydraulic fracturing operation of shale gas development, the high pressure and large displacement liquid-particle two-phase fracturing fluid can be forced to change direction many times through high-pressure double-elbow, and be transported from the outlet pipeline of the fracturing pump to the main pipeline. The high-pressure double-elbow is prone to be affected by erosion wear and Fluid-Structure Interaction (FSI), resulting in perforation and fracture, posing a potential safety threat to field operation. In this study, we conducted the erosion wear experiments on 35CrMo steel used for high-pressure double-elbow in shale-gas fracturing. The erosion rates under different impact angles and flow velocities were obtained, and proposed a novel model of erosion prediction for high-pressure double-elbow. Then the numerical investigation was employed to conduct a comprehensive analysis of erosion wear, structural stress and deformation by the coupling of Computational Fluid Dynamics (CFD) and Finite Element Analysis (FEA). The effects of structural parameters such as connection straight pipe length, pipe inner diameter and fluid turning direction were discussed. The results indicate that with the increase of connection straight pipe length, the flow erosion decreases first then varies little, and the deformation gradually increases. Slight erosion wear but large structural stress and deformation in major inner diameter pipe. And the minimum degree of erosion and flow-induced deformation present with the fluid turning direction of double-elbow as 0°. The study can provide references for the design, installation and detection of high-pressure double-elbow and ensure safety in the process of shale gas fracturing.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Heliyon Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China País de publicação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Heliyon Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China País de publicação: Reino Unido