Your browser doesn't support javascript.
loading
A Deep Learning Approach to Distance Map Generation Applied to Automatic Fiber Diameter Computation from Digital Micrographs.
Alejo Huarachi, Alain M; Beltrán Castañón, César A.
Afiliação
  • Alejo Huarachi AM; Engineering Department, Pontificia Universidad Católica del Perú, Lima 15088, Peru.
  • Beltrán Castañón CA; Engineering Department, Pontificia Universidad Católica del Perú, Lima 15088, Peru.
Sensors (Basel) ; 24(17)2024 Aug 24.
Article em En | MEDLINE | ID: mdl-39275408
ABSTRACT
Precise measurement of fiber diameter in animal and synthetic textiles is crucial for quality assessment and pricing; however, traditional methods often struggle with accuracy, particularly when fibers are densely packed or overlapping. Current computer vision techniques, while useful, have limitations in addressing these challenges. This paper introduces a novel deep-learning-based method to automatically generate distance maps of fiber micrographs, enabling more accurate fiber segmentation and diameter calculation. Our approach utilizes a modified U-Net architecture, trained on both real and simulated micrographs, to regress distance maps. This allows for the effective separation of individual fibers, even in complex scenarios. The model achieves a mean absolute error (MAE) of 0.1094 and a mean square error (MSE) of 0.0711, demonstrating its effectiveness in accurately measuring fiber diameters. This research highlights the potential of deep learning to revolutionize fiber analysis in the textile industry, offering a more precise and automated solution for quality control and pricing.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Sensors (Basel) Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Peru País de publicação: Suíça

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Sensors (Basel) Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Peru País de publicação: Suíça