Your browser doesn't support javascript.
loading
Low-Cost Non-Wearable Fall Detection System Implemented on a Single Board Computer for People in Need of Care.
Vargas, Vanessa; Ramos, Pablo; Orbe, Edwin A; Zapata, Mireya; Valencia-Aragón, Kevin.
Afiliação
  • Vargas V; Grupo de Investigación Embsys, Departamento de Eléctrica, Electrónica y Telecomunicaciones, Universidad de las Fuerzas Armadas ESPE, Av. General Rumiñahui y Ambato, Sangolquí 171103, Ecuador.
  • Ramos P; Grupo de Investigación Embsys, Departamento de Eléctrica, Electrónica y Telecomunicaciones, Universidad de las Fuerzas Armadas ESPE, Av. General Rumiñahui y Ambato, Sangolquí 171103, Ecuador.
  • Orbe EA; Grupo de Investigación Embsys, Carrera de Ingeniería en Electrónica y Automatización, Universidad de las Fuerzas Armadas ESPE, Av. General Rumiñahui y Ambato, Sangolquí 171103, Ecuador.
  • Zapata M; Centro de Investigación en Mecatrónica y Sistemas Interactivos (MIST), Ingeniería Industrial, Universidad Indoamérica, Av. Machala y Sabanilla, Quito 170103, Ecuador.
  • Valencia-Aragón K; Centro de Investigación en Mecatrónica y Sistemas Interactivos (MIST), Ingeniería Industrial, Universidad Indoamérica, Av. Machala y Sabanilla, Quito 170103, Ecuador.
Sensors (Basel) ; 24(17)2024 Aug 29.
Article em En | MEDLINE | ID: mdl-39275503
ABSTRACT
This work aims at proposing an affordable, non-wearable system to detect falls of people in need of care. The proposal uses artificial vision based on deep learning techniques implemented on a Raspberry Pi4 4GB RAM with a High-Definition IR-CUT camera. The CNN architecture classifies detected people into five classes fallen, crouching, sitting, standing, and lying down. When a fall is detected, the system sends an alert notification to mobile devices through the Telegram instant messaging platform. The system was evaluated considering real daily indoor activities under different conditions outfit, lightning, and distance from camera. Results show a good trade-off between performance and cost of the system. Obtained performance metrics are precision of 96.4%, specificity of 96.6%, accuracy of 94.8%, and sensitivity of 93.1%. Regarding privacy concerns, even though this system uses a camera, the video is not recorded or monitored by anyone, and pictures are only sent in case of fall detection. This work can contribute to reducing the fatal consequences of falls in people in need of care by providing them with prompt attention. Such a low-cost solution would be desirable, particularly in developing countries with limited or no medical alert systems and few resources.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Acidentes por Quedas Limite: Humans Idioma: En Revista: Sensors (Basel) Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Equador País de publicação: Suíça

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Acidentes por Quedas Limite: Humans Idioma: En Revista: Sensors (Basel) Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Equador País de publicação: Suíça