Your browser doesn't support javascript.
loading
Tetracycline removal by immobilized indigenous bacterial consortium using biochar and biomass: Removal performance and mechanisms.
Yu, Xinping; Bai, Mohan; Li, Xiaojing; Yang, Pinpin; Wang, Qiuzhen; Wang, Zhennan; Weng, Liping; Ye, Huike.
Afiliação
  • Yu X; Ocean College, Hebei Agricultural University, Qinhuangdao 066000, China.
  • Bai M; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs/Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China.
  • Li X; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs/Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China.
  • Yang P; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs/Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China.
  • Wang Q; Ocean College, Hebei Agricultural University, Qinhuangdao 066000, China. Electronic address: qqzz1990@163.com.
  • Wang Z; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs/Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China.
  • Weng L; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs/Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China.
  • Ye H; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs/Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China. Electronic address: yehuike@163.com.
Bioresour Technol ; : 131463, 2024 Sep 12.
Article em En | MEDLINE | ID: mdl-39277055
ABSTRACT
The significant influx of antibiotics into the environment represents ecological risks and threatens human health. Microbial degradation stands as a highly effective method for reducing antibiotic pollution. This study explored the potential of immobilized microbial consortia to efficiently degrade tetracycline. Concurrently, the suitability of different immobilization materials were assessed, with reed charcoal-immobilized consortia exhibiting the highest efficiency in removing tetracycline (92%). Similarly, wheat-bran-loaded bacterial consortia displayed a remarkable 11.43-fold increase in tetracycline removal compared with free consortia. Moreover, adding the carriers increased the nutrients, while the activities of both intracellular and extracellular catalases increased significantly post-immobilization, thus highlighting this enzyme's crucial role in tetracycline degradation. Finally, analysis of the microbial communities revealed the prevalence of Achromobacter and Parapedobacter, signifying their potential as key degraders. Overall, the immobilized consortia not only hold promise for application in the bioremediation of tetracycline-contaminated environment but also provide theoretical underpinnings for environmental remediation by microorganisms.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Bioresour Technol Assunto da revista: ENGENHARIA BIOMEDICA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China País de publicação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Bioresour Technol Assunto da revista: ENGENHARIA BIOMEDICA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China País de publicação: Reino Unido