Your browser doesn't support javascript.
loading
EMS-induced missense mutation in TaCHLI-7D affects leaf color and yield-related traits in wheat.
Wang, Zixu; Xu, Huiyuan; Wang, Faxiang; Sun, Lingling; Meng, Xiangrui; Li, Zhuochun; Xie, Chang; Jiang, Huijiao; Ding, Guangshuo; Hu, Xinrong; Gao, Yuhang; Qin, Ran; Zhao, Chunhua; Sun, Han; Cui, Fa; Wu, Yongzhen.
Afiliação
  • Wang Z; College of Horticulture, Yantai Key Laboratory of Molecular Breeding for High-Yield and Stress-Resistant Crops and Efficient Cultivation, Ludong University, Yantai, Shandong, China.
  • Xu H; College of Horticulture, Yantai Key Laboratory of Molecular Breeding for High-Yield and Stress-Resistant Crops and Efficient Cultivation, Ludong University, Yantai, Shandong, China.
  • Wang F; College of Horticulture, Yantai Key Laboratory of Molecular Breeding for High-Yield and Stress-Resistant Crops and Efficient Cultivation, Ludong University, Yantai, Shandong, China.
  • Sun L; College of Horticulture, Yantai Key Laboratory of Molecular Breeding for High-Yield and Stress-Resistant Crops and Efficient Cultivation, Ludong University, Yantai, Shandong, China.
  • Meng X; College of Horticulture, Yantai Key Laboratory of Molecular Breeding for High-Yield and Stress-Resistant Crops and Efficient Cultivation, Ludong University, Yantai, Shandong, China.
  • Li Z; College of Horticulture, Yantai Key Laboratory of Molecular Breeding for High-Yield and Stress-Resistant Crops and Efficient Cultivation, Ludong University, Yantai, Shandong, China.
  • Xie C; College of Horticulture, Yantai Key Laboratory of Molecular Breeding for High-Yield and Stress-Resistant Crops and Efficient Cultivation, Ludong University, Yantai, Shandong, China.
  • Jiang H; College of Horticulture, Yantai Key Laboratory of Molecular Breeding for High-Yield and Stress-Resistant Crops and Efficient Cultivation, Ludong University, Yantai, Shandong, China.
  • Ding G; College of Horticulture, Yantai Key Laboratory of Molecular Breeding for High-Yield and Stress-Resistant Crops and Efficient Cultivation, Ludong University, Yantai, Shandong, China.
  • Hu X; College of Horticulture, Yantai Key Laboratory of Molecular Breeding for High-Yield and Stress-Resistant Crops and Efficient Cultivation, Ludong University, Yantai, Shandong, China.
  • Gao Y; College of Horticulture, Yantai Key Laboratory of Molecular Breeding for High-Yield and Stress-Resistant Crops and Efficient Cultivation, Ludong University, Yantai, Shandong, China.
  • Qin R; College of Horticulture, Yantai Key Laboratory of Molecular Breeding for High-Yield and Stress-Resistant Crops and Efficient Cultivation, Ludong University, Yantai, Shandong, China.
  • Zhao C; College of Horticulture, Yantai Key Laboratory of Molecular Breeding for High-Yield and Stress-Resistant Crops and Efficient Cultivation, Ludong University, Yantai, Shandong, China.
  • Sun H; College of Horticulture, Yantai Key Laboratory of Molecular Breeding for High-Yield and Stress-Resistant Crops and Efficient Cultivation, Ludong University, Yantai, Shandong, China. sunhan@ldu.edu.cn.
  • Cui F; College of Horticulture, Yantai Key Laboratory of Molecular Breeding for High-Yield and Stress-Resistant Crops and Efficient Cultivation, Ludong University, Yantai, Shandong, China. sdaucf@126.com.
  • Wu Y; College of Horticulture, Yantai Key Laboratory of Molecular Breeding for High-Yield and Stress-Resistant Crops and Efficient Cultivation, Ludong University, Yantai, Shandong, China. yongzhenwu1204@163.com.
Theor Appl Genet ; 137(10): 223, 2024 Sep 15.
Article em En | MEDLINE | ID: mdl-39278978
ABSTRACT
KEY MESSAGE Mutations in TaCHLI impact chlorophyll levels and yield-related traits in wheat. Natural variations in TaCHLI-7A/B influence plant productivity, offering potential for molecular breeding. Chlorophyll is essential for plant growth and productivity. The CHLI subunit of the magnesium chelatase protein plays a key role inserting magnesium into protoporphyrin IX during chlorophyll biosynthesis. Here, we identify a novel wheat mutant chlorophyll (chl) that exhibits yellow-green leaves, reduced chlorophyll levels, and increased carotenoid content, leading to an overall decline in yield-related traits. Map-based cloning reveals that the chl phenotype is caused by a point mutation (Asp186Asn) in the TaCHLI-7D gene, which encodes subunit I of magnesium chelatase. Furthermore, the three TaCHLI mutants chl-7b-1 (Pro82Ser), chl-7b-2 (Ala291Thr), and chl-7d-1 (Gly357Glu), also showed significant reductions in chlorophyll content and yield-related traits. However, TaCHLI-7D overexpression in rice significantly decreased thousand kernel weight, yield per plant, and germination. Additionally, natural variations in TaCHLI-7A/B are significantly associated with flag leaf, spike exsertion length, and yield per plant. Notably, the favorable haplotype, TaCHLI-7B-HapII, which displayed higher thousand kernel weight and yield per plant, is positively selected in wheat breeding. Our study provides insights on the regulatory molecular mechanisms underpinning leaf color and chlorophyll biosynthesis, and highlights TaCHLI functions, which provide useful molecular markers and genetic resources for wheat breeding.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fenótipo / Triticum / Clorofila / Folhas de Planta / Mutação de Sentido Incorreto / Liases Idioma: En Revista: Theor Appl Genet / Theor. appl. genet / Theoretical and applied genetics Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China País de publicação: Alemanha

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fenótipo / Triticum / Clorofila / Folhas de Planta / Mutação de Sentido Incorreto / Liases Idioma: En Revista: Theor Appl Genet / Theor. appl. genet / Theoretical and applied genetics Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China País de publicação: Alemanha