Your browser doesn't support javascript.
loading
Hierarchically Porous Structured Adsorbents with Ultrahigh Metal-Organic Framework Loading for CO2 Capture.
Gebremariam, Solomon K; Varghese, Anish Mathai; Ehrling, Sebastian; Al Wahedi, Yasser; AlHajaj, Ahmed; Dumée, Ludovic F; Karanikolos, Georgios N.
Afiliação
  • Gebremariam SK; Department of Chemical and Petroleum Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi 127788, United Arab Emirates.
  • Varghese AM; Center for Catalysis and Separation (CeCaS), Khalifa University, P.O. Box 127788, Abu Dhabi 127788, United Arab Emirates.
  • Ehrling S; Department of Chemical and Petroleum Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi 127788, United Arab Emirates.
  • Al Wahedi Y; Center for Catalysis and Separation (CeCaS), Khalifa University, P.O. Box 127788, Abu Dhabi 127788, United Arab Emirates.
  • AlHajaj A; 3P Instruments GmbH & Co. KG, Bitterfelder Str. 1-5, Leipzig 04129, Germany.
  • Dumée LF; Abu Dhabi Maritime Academy, P.O. Box 54477, Abu Dhabi 127788, United Arab Emirates.
  • Karanikolos GN; Department of Chemical and Petroleum Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi 127788, United Arab Emirates.
ACS Appl Mater Interfaces ; 16(38): 50785-50799, 2024 Sep 25.
Article em En | MEDLINE | ID: mdl-39282713
ABSTRACT
Metal-organic frameworks (MOFs) have emerged as promising candidates for CO2 adsorption due to their ultrahigh-specific surface area and highly tunable pore-surface properties. However, their large-scale application is hindered by processing issues associated with their microcrystalline powder nature, such as dustiness, pressure drop, and poor mass transfer within packed beds. To address these challenges, shaping/structuring micron-sized polycrystalline MOF powders into millimeter-sized structured forms while preserving porosity and functionality represents an effective yet challenging approach. In this study, a facile and versatile strategy was employed to integrate moisture-stable and scalable microcrystalline MOFs (UiO-66 and ZIF-8) into a poly(acrylonitrile) matrix to fabricate readily processable, millimeter-sized hierarchically porous structured adsorbents with ultrahigh MOF loadings (∼90 wt %) for direct industrial carbon capture applications. These structured composite beads retained the physicochemical properties and separation performance of the pristine MOF crystal particles. Structured UiO-66 and ZIF-8 exhibited high specific surface areas of 1130 m2 g-1 and 1431 m2 g-1, respectively. The structured UiO-66 achieved a CO2 adsorption capacity of 2.0 mmol g-1 at 1 bar and a dynamic CO2/N2 selectivity of 17 for a CO2/N2 gas mixture with a 15/85 volume ratio at 25 °C. Furthermore, the structured adsorbents exhibited excellent cyclability in static and dynamic CO2 adsorption studies, making them promising candidates for practical application.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces / ACS appl. mater. interfaces (Online) / ACS applied materials & interfaces (Online) Assunto da revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Emirados Árabes Unidos País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces / ACS appl. mater. interfaces (Online) / ACS applied materials & interfaces (Online) Assunto da revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Emirados Árabes Unidos País de publicação: Estados Unidos