Your browser doesn't support javascript.
loading
Nanoplastics exposure-induced mitochondrial dysfunction contributes to disrupted stem cell differentiation in human cerebral organoids.
Tao, Mengdan; Wang, Can; Zheng, Zhilong; Gao, Weiwei; Chen, Qi; Xu, Min; Zhu, Wanying; Xu, Lei; Han, Xiao; Guo, Xing; Liu, Yan.
Afiliação
  • Tao M; State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering; Department of neurology, affiliated Zhongda Hospital, Southeast University, Nanjing 210096, China; Institute of Stem Cell and Neural Regeneration, School of pharmacy, Nanjing Medical University
  • Wang C; Institute of Stem Cell and Neural Regeneration, School of pharmacy, Nanjing Medical University, Nanjing 211166, China; State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China.
  • Zheng Z; Department of Neurobiology, School of Basic Medical Sciences; Nanjing Medical University, Nanjing 211166, China.
  • Gao W; Institute of Stem Cell and Neural Regeneration, School of pharmacy, Nanjing Medical University, Nanjing 211166, China; State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China.
  • Chen Q; Institute of Stem Cell and Neural Regeneration, School of pharmacy, Nanjing Medical University, Nanjing 211166, China; State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China.
  • Xu M; Institute of Stem Cell and Neural Regeneration, School of pharmacy, Nanjing Medical University, Nanjing 211166, China; State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China.
  • Zhu W; Institute of Stem Cell and Neural Regeneration, School of pharmacy, Nanjing Medical University, Nanjing 211166, China; State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China.
  • Xu L; State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering; Department of neurology, affiliated Zhongda Hospital, Southeast University, Nanjing 210096, China; Institute of Stem Cell and Neural Regeneration, School of pharmacy, Nanjing Medical University
  • Han X; Institute of Stem Cell and Neural Regeneration, School of pharmacy, Nanjing Medical University, Nanjing 211166, China; State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China. Electronic address: xhan1988@njmu.edu.cn.
  • Guo X; State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China; Department of Neurobiology, School of Basic Medical Sciences; Nanjing Medical University, Nanjing 211166, China. Electronic address: guox@njmu.edu.cn.
  • Liu Y; State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering; Department of neurology, affiliated Zhongda Hospital, Southeast University, Nanjing 210096, China; Institute of Stem Cell and Neural Regeneration, School of pharmacy, Nanjing Medical University
Ecotoxicol Environ Saf ; 285: 117063, 2024 Sep 18.
Article em En | MEDLINE | ID: mdl-39299213
ABSTRACT
Nanoplastics are ubiquitous in our daily lives, raising concerns about their potential impact on the human brain. Many studies reported that nanoplastics permeate the blood-brain barrier and influence cellular processes in mouse models. However, the neurotoxic effects of ingesting nanoplastics on human brain remain poorly understood. Here, we treated cerebral organoids with polystyrene nanoplastics to model the effects of nanoplastic exposure on human brain. Importantly, we found that mitochondria might be the significant organelles affected by polystyrene nanoplastics using immunostaing and RNA-seq analysis. Subsequently, we observed the increased cell death and decreased cell differentiation in our cerebral organoids. In conclusion, our findings shed insights on the mechanisms underlying the toxicity of nanoplastics on human brain organoids, providing an evaluation system in detection potential environmental toxicity on human brain.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Ecotoxicol Environ Saf Ano de publicação: 2024 Tipo de documento: Article País de publicação: Holanda

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Ecotoxicol Environ Saf Ano de publicação: 2024 Tipo de documento: Article País de publicação: Holanda